Bo Yang
2021
How to leverage the multimodal EHR data for better medical prediction?
Bo Yang
|
Lijun Wu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Healthcare is becoming a more and more important research topic recently. With the growing data in the healthcare domain, it offers a great opportunity for deep learning to improve the quality of service and reduce costs. However, the complexity of electronic health records (EHR) data is a challenge for the application of deep learning. Specifically, the data produced in the hospital admissions are monitored by the EHR system, which includes structured data like daily body temperature and unstructured data like free text and laboratory measurements. Although there are some preprocessing frameworks proposed for specific EHR data, the clinical notes that contain significant clinical value are beyond the realm of their consideration. Besides, whether these different data from various views are all beneficial to the medical tasks and how to best utilize these data remain unclear. Therefore, in this paper, we first extract the accompanying clinical notes from EHR and propose a method to integrate these data, we also comprehensively study the different models and the data leverage methods for better medical task prediction performance. The results on two prediction tasks show that our fused model with different data outperforms the state-of-the-art method without clinical notes, which illustrates the importance of our fusion method and the clinical note features.
2018
A Pseudo Label based Dataless Naive Bayes Algorithm for Text Classification with Seed Words
Ximing Li
|
Bo Yang
Proceedings of the 27th International Conference on Computational Linguistics
Traditional supervised text classifiers require a large number of manually labeled documents, which are often expensive to obtain. Recently, dataless text classification has attracted more attention, since it only requires very few seed words of categories that are much cheaper. In this paper, we develop a pseudo-label based dataless Naive Bayes (PL-DNB) classifier with seed words. We initialize pseudo-labels for each document using seed word occurrences, and employ the expectation maximization algorithm to train PL-DNB in a semi-supervised manner. The pseudo-labels are iteratively updated using a mixture of seed word occurrences and estimations of label posteriors. To avoid noisy pseudo-labels, we also consider the information of nearest neighboring documents in the pseudo-label update step, i.e., preserving local neighborhood structure of documents. We empirically show that PL-DNB outperforms traditional dataless text classification algorithms with seed words. Especially, PL-DNB performs well on the imbalanced dataset.