Bo Zhou


pdf bib
WYWEB: A NLP Evaluation Benchmark For Classical Chinese
Bo Zhou | Qianglong Chen | Tianyu Wang | Xiaomi Zhong | Yin Zhang
Findings of the Association for Computational Linguistics: ACL 2023

To fully evaluate the overall performance of different NLP models in a given domain, many evaluation benchmarks are proposed, such as GLUE, SuperGLUE and CLUE. The field of natural language understanding has traditionally focused on benchmarks for various tasks in languages such as Chinese, English, and multilingual, however, there has been a lack of attention given to the area of classical Chinese, also known as "wen yan wen (文言文)", which has a rich history spanning thousands of years and holds significant cultural and academic value. For the prosperity of the NLP community, in this paper, we introduce the WYWEB evaluation benchmark, which consists of nine NLP tasks in classical Chinese, implementing sentence classification, sequence labeling, reading comprehension, and machine translation. We evaluate the existing pre-trained language models, which are all struggling with this benchmark. We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on classical Chinese NLU. The github repository is

pdf bib
Skill-Based Few-Shot Selection for In-Context Learning
Shengnan An | Bo Zhou | Zeqi Lin | Qiang Fu | Bei Chen | Nanning Zheng | Weizhu Chen | Jian-Guang Lou
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

*In-context learning* is the paradigm that adapts large language models to downstream tasks by providing a few examples. *Few-shot selection*—selecting appropriate examples for each test instance separately—is important for in-context learning. In this paper, we propose **Skill-KNN**, a skill-based few-shot selection method for in-context learning. The key advantages of Skill-KNN include: (1) it addresses the problem that existing methods based on pre-trained embeddings can be easily biased by surface natural language features that are not important for the target task; (2) it does not require training or fine-tuning of any models, making it suitable for frequently expanding or changing example banks. The key insight is to optimize the inputs fed into the embedding model, rather than tuning the model itself. Technically, Skill-KNN generates the skill-based descriptions for each test case and candidate example by utilizing a pre-processing few-shot prompting, thus eliminating unimportant surface features. Experimental results across five cross-domain semantic parsing datasets and six backbone models show that Skill-KNN significantly outperforms existing methods.


pdf bib
Augmentation, Retrieval, Generation: Event Sequence Prediction with a Three-Stage Sequence-to-Sequence Approach
Bo Zhou | Chenhao Wang | Yubo Chen | Kang Liu | Jun Zhao | Jiexin Xu | Xiaojian Jiang | Qiuxia Li
Proceedings of the 29th International Conference on Computational Linguistics

Being able to infer possible events related to a specific target is critical to natural language processing. One challenging task in this line is event sequence prediction, which aims at predicting a sequence of events given a goal. Currently existing approach models this task as a statistical induction problem, to predict a sequence of events by exploring the similarity between the given goal and the known sequences of events. However, this statistical based approach is complex and predicts a limited variety of events. At the same time this approach ignores the rich knowledge of external events that is important for predicting event sequences. In this paper, in order to predict more diverse events, we first reformulate the event sequence prediction problem as a sequence generation problem. Then to leverage external event knowledge, we propose a three-stage model including augmentation, retrieval and generation. Experimental results on the event sequence prediction dataset show that our model outperforms existing methods, demonstrating the effectiveness of the proposed model.

pdf bib
Generating Temporally-ordered Event Sequences via Event Optimal Transport
Bo Zhou | Yubo Chen | Kang Liu | Jun Zhao | Jiexin Xu | Xiaojian Jiang | Qiuxia Li
Proceedings of the 29th International Conference on Computational Linguistics

Generating temporally-ordered event sequences in texts is important to natural language processing. Two emerging tasks in this direction are temporal event ordering (rearranging the set of events to correct order) and event infilling (generating an event at a specified position). To tackle the two related tasks, the existing method adopts a vanilla sequence-to-sequence model via maximum likelihood estimation (MLE). However, applying this approach to these tasks will cause two issues. One issue is that the MLE loss emphasizes strict local alignment and ignores the global semantics of the event. The other issue is that the model adopts a word-level objective to model events in texts, failing to evaluate the predicted results of the model from the perspective of event sequence. To alleviate these issues, we present a novel model to tackle the generation of temporally-ordered event sequences via Event Optimal Transport (EOT). First, we treat the events in the sequence as modeling units and explicitly extract the semantics of the events. Second, to provide event sequence-level evaluation of the predicted results of the model, we directly match events in sequences. Extensive experimental results show that our approach outperforms previous models on all evaluation datasets. In particular, the accuracy is improved by 7.7%, and the Macro F1 is improved by 7.2% on one of the datasets.