Bofei Gao
2023
Guiding AMR Parsing with Reverse Graph Linearization
Bofei Gao
|
Liang Chen
|
Peiyi Wang
|
Zhifang Sui
|
Baobao Chang
Findings of the Association for Computational Linguistics: EMNLP 2023
Abstract Meaning Representation (AMR) parsing aims to extract an abstract semantic graph from a given sentence. The sequence-to-sequence approaches, which linearize the semantic graph into a sequence of nodes and edges and generate the linearized graph directly, have achieved good performance. However, we observed that these approaches suffer from structure loss accumulation during the decoding process, leading to a much lower F1-score for nodes and edges decoded later compared to those decoded earlier. To address this issue, we propose a novel Reverse Graph Linearization (RGL) enhanced framework. RGL defines both default and reverse linearization orders of an AMR graph, where most structures at the back part of the default order appear at the front part of the reversed order and vice versa. RGL incorporates the reversed linearization to the original AMR parser through a two-pass self-distillation mechanism, which guides the model when generating the default linearizations. Our analysis shows that our proposed method significantly mitigates the problem of structure loss accumulation, outperforming the previously best AMR parsing model by 0.8 and 0.5 Smatch scores on the AMR 2.0 and AMR 3.0 dataset, respectively. The code are available at https://github.com/pkunlp-icler/AMR_reverse_graph_linearization.
Coarse-to-Fine Dual Encoders are Better Frame Identification Learners
Kaikai An
|
Ce Zheng
|
Bofei Gao
|
Haozhe Zhao
|
Baobao Chang
Findings of the Association for Computational Linguistics: EMNLP 2023
Frame identification aims to find semantic frames associated with target words in a sentence. Recent researches measure the similarity or matching score between targets and candidate frames by modeling frame definitions. However, they either lack sufficient representation learning of the definitions or face challenges in efficiently selecting the most suitable frame from over 1000 candidate frames. Moreover, commonly used lexicon filtering (lf) to obtain candidate frames for the target may ignore out-of-vocabulary targets and cause inadequate frame modeling. In this paper, we propose CoFFTEA, a ̲Coarse-to- ̲Fine ̲Frame and ̲Target ̲Encoders ̲Architecture. With contrastive learning and dual encoders, CoFFTEA efficiently and effectively models the alignment between frames and targets. By employing a coarse-to-fine curriculum learning procedure, CoFFTEA gradually learns to differentiate frames with varying degrees of similarity. Experimental results demonstrate that CoFFTEA outperforms previous models by 0.93 overall scores and 1.53 R@1 without lf. Further analysis suggests that CoFFTEA can better model the relationships between frame and frame, as well as target and target. The code for our approach is available at https://github.com/pkunlp-icler/COFFTEA.
Search
Fix data
Co-authors
- Baobao Chang (常宝宝) 2
- Kaikai An 1
- Liang Chen 1
- Zhifang Sui (穗志方) 1
- Peiyi Wang (王培懿) 1
- show all...