Natural language contains rich logical structures and logical information, and correctly detecting and accurately understanding these logical structures and information underlying natural language texts is very crucial for NLP models’ performance on many important NLU and NLG tasks. Existing pre-trained language models based on the transformer architecture mostly adopt a classical design for constructing their input embeddings that ignores the logical structures underlying natural language texts, thus limiting their ability to better capture and encode key logical information in the input sequences. To overcome such limitations, in this paper we first propose a novel approach to construct logic-aware input embeddings for transformer language models through a combination of logic detection, logic mapping and hierarchical logical projections, and then develop a corresponding new modeling paradigm that can upgrade existing transformer language models into logical transformers to boost their performance on different NLU and NLG tasks. Our empirical experiments on four important and challenging NLU and NLG tasks demonstrate that our proposed logical transformer language models can achieve superior performance over their baseline transformer models through a deeper understanding of the logical structures of texts.
The primary focus of recent work with large-scale transformers has been on optimizing the amount of information packed into the model’s parameters. In this work, we ask a complementary question: Can multimodal transformers leverage explicit knowledge in their reasoning? Existing, primarily unimodal, methods have explored approaches under the paradigm of knowledge retrieval followed by answer prediction, but leave open questions about the quality and relevance of the retrieved knowledge used, and how the reasoning processes over implicit and explicit knowledge should be integrated. To address these challenges, we propose a - Knowledge Augmented Transformer (KAT) - which achieves a strong state-of-the-art result (+6% absolute) on the open-domain multimodal task of OK-VQA. Our approach integrates implicit and explicit knowledge in an encoder-decoder architecture, while still jointly reasoning over both knowledge sources during answer generation. Additionally, explicit knowledge integration improves interpretability of model predictions in our analysis.
Factual inconsistencies in generated summaries severely limit the practical applications of abstractive dialogue summarization. Although significant progress has been achieved by using pre-trained neural language models, substantial amounts of hallucinated content are found during the human evaluation. In this work, we first devised a typology of factual errors to better understand the types of hallucinations generated by current models and conducted human evaluation on popular dialog summarization dataset. We further propose a training strategy that improves the factual consistency and overall quality of summaries via a novel contrastive fine-tuning, called CONFIT. To tackle top factual errors from our annotation, we introduce additional contrastive loss with carefully designed hard negative samples and self-supervised dialogue-specific loss to capture the key information between speakers. We show that our model significantly reduces all kinds of factual errors on both SAMSum dialogue summarization and AMI meeting summarization. On both datasets, we achieve significant improvements over state-of-the-art baselines using both automatic metrics, ROUGE and BARTScore, and human evaluation.
Current pre-trained models applied for summarization are prone to factual inconsistencies that misrepresent the source text. Evaluating the factual consistency of summaries is thus necessary to develop better models. However, the human evaluation setup for evaluating factual consistency has not been standardized. To determine the factors that affect the reliability of the human evaluation, we crowdsource evaluations for factual consistency across state-of-the-art models on two news summarization datasets using the rating-based Likert Scale and ranking-based Best-Worst Scaling. Our analysis reveals that the ranking-based Best-Worst Scaling offers a more reliable measure of summary quality across datasets and that the reliability of Likert ratings highly depends on the target dataset and the evaluation design. To improve crowdsourcing reliability, we extend the scale of the Likert rating and present a scoring algorithm for Best-Worst Scaling that we call value learning. Our crowdsourcing guidelines will be publicly available to facilitate future work on factual consistency in summarization.
Abstractive dialogue summarization has long been viewed as an important standalone task in natural language processing, but no previous work has explored the possibility of whether abstractive dialogue summarization can also be used as a means to boost an NLP system’s performance on other important dialogue comprehension tasks. In this paper, we propose a novel type of dialogue summarization task - STRUctured DiaLoguE Summarization (STRUDEL) - that can help pre-trained language models to better understand dialogues and improve their performance on important dialogue comprehension tasks. In contrast to the holistic approach taken by the traditional free-form abstractive summarization task for dialogues, STRUDEL aims to decompose and imitate the hierarchical, systematic and structured mental process that we human beings usually go through when understanding and analyzing dialogues, and thus has the advantage of being more focused, specific and instructive for dialogue comprehension models to learn from. We further introduce a new STRUDEL dialogue comprehension modeling framework that integrates STRUDEL into a dialogue reasoning module over transformer encoder language models to improve their dialogue comprehension ability. In our empirical experiments on two important downstream dialogue comprehension tasks - dialogue question answering and dialogue response prediction - we demonstrate that our STRUDEL dialogue comprehension models can significantly improve the dialogue comprehension performance of transformer encoder language models.
While online conversations can cover a vast amount of information in many different formats, abstractive text summarization has primarily focused on modeling solely news articles. This research gap is due, in part, to the lack of standardized datasets for summarizing online discussions. To address this gap, we design annotation protocols motivated by an issues–viewpoints–assertions framework to crowdsource four new datasets on diverse online conversation forms of news comments, discussion forums, community question answering forums, and email threads. We benchmark state-of-the-art models on our datasets and analyze characteristics associated with the data. To create a comprehensive benchmark, we also evaluate these models on widely-used conversation summarization datasets to establish strong baselines in this domain. Furthermore, we incorporate argument mining through graph construction to directly model the issues, viewpoints, and assertions present in a conversation and filter noisy input, showing comparable or improved results according to automatic and human evaluations.