The rapid development of large language models has led to the widespread adoption of Retrieval-Augmented Generation (RAG), which integrates external knowledge to alleviate knowledge bottlenecks and mitigate hallucinations. However, the existing RAG paradigm inevitably suffers from the impact of flawed information introduced during the retrieval phrase, thereby diminishing the reliability and correctness of the generated outcomes. In this paper, we propose Credibility-aware Generation (CAG), a universally applicable framework designed to mitigate the impact of flawed information in RAG. At its core, CAG aims to equip models with the ability to discern and process information based on its credibility. To this end, we propose an innovative data transformation framework that generates data based on credibility, thereby effectively endowing models with the capability of CAG. Furthermore, to accurately evaluate the models’ capabilities of CAG, we construct a comprehensive benchmark covering three critical real-world scenarios. Experimental results demonstrate that our model can effectively understand and employ credibility for generation, significantly outperform other models with retrieval augmentation, and exhibit robustness despite the increasing noise in the context.
Evaluation is the baton for the development of large language models. Current evaluations typically employ a single-item assessment paradigm for each atomic test objective, which struggle to discern whether a model genuinely possesses the required capabilities or merely memorizes/guesses the answers to specific questions. To this end, this paper proposes a novel evaluation framework referred to as StructEval. Starting from an atomic test objective, StructEval deepens and broadens the evaluation by conducting a structured assessment across multiple cognitive levels and critical concepts, and therefore offers a comprehensive, robust and consistent evaluations for large language models. Experiments on three widely-used benchmarks demonstrate that StructEval serves as a reliable tool for resisting the risk of data contamination, and reducing the interference of potential biases, thereby providing a more reliable and consistent conclusion regarding model capabilities. Our framework also sheds light on the design of future principled and trustworthy LLM evaluation protocols.
Instruction Fine-tuning (IFT) is a crucial phase in building large language models (LLMs). Previous works mainly focus on the IFT’s role in the transfer of behavioral norms and the learning of additional world knowledge. However, the understanding of the underlying mechanisms of IFT remains significantly limited. In this paper, we design a knowledge intervention framework to decouple the potential underlying factors of IFT, thereby enabling individual analysis of different factors. Surprisingly, our experiments reveal that attempting to learn additional world knowledge through IFT often struggles to yield positive impacts and can even lead to markedly negative effects. Further, we discover that maintaining internal knowledge consistency before and after IFT is a critical factor for achieving successful IFT. Our findings reveal the underlying mechanisms of IFT and provide robust support for some very recent and potential future works.
The practice of Retrieval-Augmented Generation (RAG), which integrates Large Language Models (LLMs) with retrieval systems, has become increasingly prevalent. However, the repercussions of LLM-derived content infiltrating the web and influencing the retrieval-generation feedback loop are largely uncharted territories. In this study, we construct and iteratively run a simulation pipeline to deeply investigate the short-term and long-term effects of LLM text on RAG systems. Taking the trending Open Domain Question Answering (ODQA) task as a point of entry, our findings reveal a potential digital “Spiral of Silence” effect, with LLM-generated text consistently outperforming human-authored content in search rankings, thereby diminishing the presence and impact of human contributions online. This trend risks creating an imbalanced information ecosystem, where the unchecked proliferation of erroneous LLM-generated content may result in the marginalization of accurate information. We urge the academic community to take heed of this potential issue, ensuring a diverse and authentic digital information landscape.
Memory is one of the most essential cognitive functions serving as a repository of world knowledge and episodes of activities. In recent years, large-scale pre-trained language models have shown remarkable memorizing ability. On the contrary, vanilla neural networks without pre-training have been long observed suffering from the catastrophic forgetting problem. To investigate such a retentive-forgetful contradiction and understand the memorizing dynamic mechanism of language models, we conduct thorough experiments by controlling the target knowledge types, the learning strategies and the learning schedules. We find that: 1) Vanilla language models without pre-training are forgetful; 2) Pre-training leads to retentive language models; 3) Knowledge relevance and diversification significantly influence the memory formation. These conclusions are useful for understanding the abilities of pre-trained language models and shed light on designing and evaluating new learning and inference algorithms of language models.
Named entity recognition in real-world applications suffers from the diversity of entity types, the emergence of new entity types, and the lack of high-quality annotations. To address the above problems, this paper proposes an in-context learning-based NER approach, which can effectively inject in-context NER ability into PLMs and recognize entities of novel types on-the-fly using only a few demonstrative instances. Specifically, we model PLMs as a meta-function Lambda_instruction, demonstrations, text.M, and a new entity extractor can be implicitly constructed by applying new instruction and demonstrations to PLMs, i.e., (Lambda . M) (instruction, demonstrations) ->F where F will be a new entity extractor F: text -> entities. To inject the above in-context NER ability into PLMs, we propose a meta-function pre-training algorithm, which pre-trains PLMs by comparing the (instruction, demonstration)-initialized extractor with a surrogate golden extractor. Experimental results on 4 few-shot NER datasets show that our method can effectively inject in-context NER ability into PLMs and significantly outperforms the PLMs+fine-tuning counterparts.
In recent years, the injection of factual knowledge has been observed to have a significant positive correlation to the downstream task performance of pre-trained language models. However, existing work neither demonstrates that pre-trained models successfully learn the injected factual knowledge nor proves that there is a causal relation between injected factual knowledge and downstream performance improvements. In this paper, we introduce a counterfactual-based analysis framework to explore the causal effects of factual knowledge injection on the performance of language models within pretrain-finetune paradigm. Instead of directly probing the language model or exhaustively enumerating potential confounding factors, we analyze this issue by perturbing the factual knowledge sources at different scales and comparing the performance of pre-trained language models before and after the perturbation. Surprisingly, throughout our experiments, we find that although the knowledge seems to be successfully injected, the correctness of injected knowledge only has a very limited effect on the models’ downstream performance. This finding strongly challenges previous assumptions that the injected factual knowledge is the key for language models to achieve performance improvements on downstream tasks in pretrain-finetune paradigm.
Low-shot relation extraction (RE) aims to recognize novel relations with very few or even no samples, which is critical in real scenario application. Few-shot and zero-shot RE are two representative low-shot RE tasks, which seem to be with similar target but require totally different underlying abilities. In this paper, we propose Multi-Choice Matching Networks to unify low-shot relation extraction. To fill in the gap between zero-shot and few-shot RE, we propose the triplet-paraphrase meta-training, which leverages triplet paraphrase to pre-train zero-shot label matching ability and uses meta-learning paradigm to learn few-shot instance summarizing ability. Experimental results on three different low-shot RE tasks show that the proposed method outperforms strong baselines by a large margin, and achieve the best performance on few-shot RE leaderboard.
Prompt-based probing has been widely used in evaluating the abilities of pretrained language models (PLMs). Unfortunately, recent studies have discovered such an evaluation may be inaccurate, inconsistent and unreliable. Furthermore, the lack of understanding its inner workings, combined with its wide applicability, has the potential to lead to unforeseen risks for evaluating and applying PLMs in real-world applications. To discover, understand and quantify the risks, this paper investigates the prompt-based probing from a causal view, highlights three critical biases which could induce biased results and conclusions, and proposes to conduct debiasing via causal intervention. This paper provides valuable insights for the design of unbiased datasets, better probing frameworks and more reliable evaluations of pretrained language models. Furthermore, our conclusions also echo that we need to rethink the criteria for identifying better pretrained language models.
Previous literatures show that pre-trained masked language models (MLMs) such as BERT can achieve competitive factual knowledge extraction performance on some datasets, indicating that MLMs can potentially be a reliable knowledge source. In this paper, we conduct a rigorous study to explore the underlying predicting mechanisms of MLMs over different extraction paradigms. By investigating the behaviors of MLMs, we find that previous decent performance mainly owes to the biased prompts which overfit dataset artifacts. Furthermore, incorporating illustrative cases and external contexts improve knowledge prediction mainly due to entity type guidance and golden answer leakage. Our findings shed light on the underlying predicting mechanisms of MLMs, and strongly question the previous conclusion that current MLMs can potentially serve as reliable factual knowledge bases.