Brenda Curtis


pdf bib
Nonsuicidal Self-Injury and Substance Use Disorders: A Shared Language of Addiction
Salvatore Giorgi | Mckenzie Himelein-wachowiak | Daniel Habib | Lyle Ungar | Brenda Curtis
Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology

Nonsuicidal self-injury (NSSI), or the deliberate injuring of one?s body without intending to die, has been shown to exhibit many similarities to substance use disorders (SUDs), including population-level characteristics, impulsivity traits, and comorbidity with other mental disorders. Research has further shown that people who self-injure adopt language common in SUD recovery communities (e.g., “clean”, “relapse”, “addiction,” and celebratory language about sobriety milestones). In this study, we investigate the shared language of NSSI and SUD by comparing discussions on public Reddit forums related to self-injury and drug addiction. To this end, we build a set of LDA topics across both NSSI and SUD Reddit users and show that shared language across the two domains includes SUD recovery language in addition to other themes common to support forums (e.g., requests for help and gratitude). Next, we examine Reddit-wide posting activity and note that users posting in {emph{r/selfharm} also post in many mental health-related subreddits, while users of drug addiction related subreddits do not, despite high comorbidity between NSSI and SUDs. These results show that while people who self-injure may contextualize their disorder as an addiction, their posting habits demonstrate comorbidities with other mental disorders more so than their counterparts in recovery from SUDs. These observations have clinical implications for people who self-injure and seek support by sharing their experiences online.


pdf bib
Discovering Black Lives Matter Events in the United States: Shared Task 3, CASE 2021
Salvatore Giorgi | Vanni Zavarella | Hristo Tanev | Nicolas Stefanovitch | Sy Hwang | Hansi Hettiarachchi | Tharindu Ranasinghe | Vivek Kalyan | Paul Tan | Shaun Tan | Martin Andrews | Tiancheng Hu | Niklas Stoehr | Francesco Ignazio Re | Daniel Vegh | Dennis Atzenhofer | Brenda Curtis | Ali Hürriyetoğlu
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)

Evaluating the state-of-the-art event detection systems on determining spatio-temporal distribution of the events on the ground is performed unfrequently. But, the ability to both (1) extract events “in the wild” from text and (2) properly evaluate event detection systems has potential to support a wide variety of tasks such as monitoring the activity of socio-political movements, examining media coverage and public support of these movements, and informing policy decisions. Therefore, we study performance of the best event detection systems on detecting Black Lives Matter (BLM) events from tweets and news articles. The murder of George Floyd, an unarmed Black man, at the hands of police officers received global attention throughout the second half of 2020. Protests against police violence emerged worldwide and the BLM movement, which was once mostly regulated to the United States, was now seeing activity globally. This shared task asks participants to identify BLM related events from large unstructured data sources, using systems pretrained to extract socio-political events from text. We evaluate several metrics, accessing each system’s ability to identify protest events both temporally and spatially. Results show that identifying daily protest counts is an easier task than classifying spatial and temporal protest trends simultaneously, with maximum performance of 0.745 and 0.210 (Pearson r), respectively. Additionally, all baselines and participant systems suffered from low recall, with a maximum recall of 5.08.