Brent Kious
2023
Logic-driven Indirect Supervision: An Application to Crisis Counseling
Mattia Medina Grespan
|
Meghan Broadbent
|
Xinyao Zhang
|
Katherine Axford
|
Brent Kious
|
Zac Imel
|
Vivek Srikumar
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Ensuring the effectiveness of text-based crisis counseling requires observing ongoing conversations and providing feedback, both labor-intensive tasks. Automatic analysis of conversations—at the full chat and utterance levels—may help support counselors and provide better care. While some session-level training data (e.g., rating of patient risk) is often available from counselors, labeling utterances requires expensive post hoc annotation. But the latter can not only provide insights about conversation dynamics, but can also serve to support quality assurance efforts for counselors. In this paper, we examine if inexpensive—and potentially noisy—session-level annotation can help improve label utterances. To this end, we propose a logic-based indirect supervision approach that exploits declaratively stated structural dependencies between both levels of annotation to improve utterance modeling. We show that adding these rules gives an improvement of 3.5% f-score over a strong multi-task baseline for utterance-level predictions. We demonstrate via ablation studies how indirect supervision via logic rules also improves the consistency and robustness of the system.
2016
Vocabulary Development To Support Information Extraction of Substance Abuse from Psychiatry Notes
Sumithra Velupillai
|
Danielle L. Mowery
|
Mike Conway
|
John Hurdle
|
Brent Kious
Proceedings of the 15th Workshop on Biomedical Natural Language Processing
Search
Fix data
Co-authors
- Katherine Axford 1
- Meghan Broadbent 1
- Mike Conway 1
- John Hurdle 1
- Zac Imel 1
- show all...