Brian Diep


2023

pdf bib
Investigating Online Community Engagement through Stancetaking
Jai Aggarwal | Brian Diep | Julia Watson | Suzanne Stevenson
Findings of the Association for Computational Linguistics: EMNLP 2023

Much work has explored lexical and semantic variation in online communities, and drawn connections to community identity and user engagement patterns. Communities also express identity through the sociolinguistic concept of stancetaking. Large-scale computational work on stancetaking has explored community similarities in their preferences for stance markers – words that serve to indicate aspects of a speaker’s stance – without considering the stance-relevant properties of the contexts in which stance markers are used. We propose representations of stance contexts for 1798 Reddit communities and show how they capture community identity patterns distinct from textual or marker similarity measures. We also relate our stance context representations to broader inter- and intra-community engagement patterns, including cross-community posting patterns and social network properties of communities. Our findings highlight the strengths of using rich properties of stance as a way of revealing community identity and engagement patterns in online multi-community spaces.

2022

pdf bib
DEPAC: a Corpus for Depression and Anxiety Detection from Speech
Mashrura Tasnim | Malikeh Ehghaghi | Brian Diep | Jekaterina Novikova
Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology

Mental distress like depression and anxiety contribute to the largest proportion of the global burden of diseases. Automated diagnosis system of such disorders, empowered by recent innovations in Artificial Intelligence, can pave the way to reduce the sufferings of the affected individuals. Development of such systems requires information-rich and balanced corpora. In this work, we introduce a novel mental distress analysis audio dataset DEPAC, labelled based on established thresholds on depression and anxiety standard screening tools. This large dataset comprises multiple speech tasks per individual, as well as relevant demographic information. Alongside, we present a feature set consisting of hand-curated acoustic and linguistic features, which were found effective in identifying signs of mental illnesses in human speech. Finally, we justify the quality and effectiveness of our proposed audio corpus and feature set in predicting depression severity by comparing the performance of baseline machine learning models built on this dataset with baseline models trained on other well-known depression corpora.