We present version 1.3 of the PARSEME multilingual corpus annotated with verbal multiword expressions. Since the previous version, new languages have joined the undertaking of creating such a resource, some of the already existing corpora have been enriched with new annotated texts, while others have been enhanced in various ways. The PARSEME multilingual corpus represents 26 languages now. All monolingual corpora therein use Universal Dependencies v.2 tagset. They are (re-)split observing the PARSEME v.1.2 standard, which puts impact on unseen VMWEs. With the current iteration, the corpus release process has been detached from shared tasks; instead, a process for continuous improvement and systematic releases has been introduced.
We present a graph-based tool which can be used to explore Verbal Multi-Word Expression (VMWE) annotated in the Parseme project. The tool can be used for linguistic exploration on the data, for helping the manual annotation process and to search for errors or inconsistencies in the annotations.
This paper presents how the online tool Grew-match can be used to make queries and visualise data from existing semantically annotated corpora. A dedicated syntax is available to construct simple to complex queries and execute them against a corpus. Such queries give transverse views of the annotated data, this views can help for checking the consistency of annotations in one corpus or across several corpora. Grew-match can then be seen as an error mining tool: when inconsistencies are detected, it helps finding the sentences which should be fixed. Finally, Grew-match can also be used as a side tool to assist annotation task helping to find annotations examples in existing corpora to be compare to the data to be annotated.
In this paper, we consider two of the currently popular semantic frameworks: Abstract Meaning Representation (AMR) - a more abstract framework, and Universal Conceptual Cognitive Annotation (UCCA) - an anchored framework. We use a corpus-based approach to build two graph rewriting systems, a deterministic and a non-deterministic one, from the former to the latter framework. We present their evaluation and a number of ambiguities that we discovered while building our rules. Finally, we provide a discussion and some future work directions in relation to comparing semantic frameworks of different flavors.
This paper describes the continuation of a project that aims at establishing an interoperable annotation schema for quantification phenomena as part of the ISO suite of standards for semantic annotation, known as the Semantic Annotation Framework. After a break, caused by the Covid-19 pandemic, the project was relaunched in early 2022 with a second working draft of an annotation scheme, which is discussed in this paper. Keywords: semantic annotation, quantification, interoperability, annotation schema, ISO standard
This paper details experiments we performed on the Universal Dependencies 2.7 corpora in order to investigate the dominant word order in the available languages. For this purpose, we used a graph rewriting tool, GREW, which allowed us to go beyond the surface annotations and identify the implicit subjects. We first measured the distribution of the six different word orders (SVO, SOV, VSO, VOS, OVS, OSV) in the corpora and investigated when there was a significant difference in the corpora within a given language. Then, we compared the obtained results with information provided in the WALS database (Dryer and Haspelmath, 2013) and in ( ̈Ostling, 2015). Finally, we examined the impact of using a graph rewriting tool for this task. The tools and resources used for this research are all freely available.
This article presents a set of tools built around the Graph Rewriting computational framework which can be used to compute complex rule-based transformations on linguistic structures. Application of the graph matching mechanism for corpus exploration, error mining or quantitative typology are also given.
This paper describes a system proposed for the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies (EUD). We propose a Graph Rewriting based system for computing Enhanced Universal Dependencies, given the Basic Universal Dependencies (UD).
We present edition 1.2 of the PARSEME shared task on identification of verbal multiword expressions (VMWEs). Lessons learned from previous editions indicate that VMWEs have low ambiguity, and that the major challenge lies in identifying test instances never seen in the training data. Therefore, this edition focuses on unseen VMWEs. We have split annotated corpora so that the test corpora contain around 300 unseen VMWEs, and we provide non-annotated raw corpora to be used by complementary discovery methods. We released annotated and raw corpora in 14 languages, and this semi-supervised challenge attracted 7 teams who submitted 9 system results. This paper describes the effort of corpus creation, the task design, and the results obtained by the participating systems, especially their performance on unseen expressions.
We present here Rigor Mortis, a gamified crowdsourcing platform designed to evaluate the intuition of the speakers, then train them to annotate multi-word expressions (MWEs) in French corpora. We previously showed that the speakers’ intuition is reasonably good (65% in recall on non-fixed MWE). We detail here the annotation results, after a training phase using some of the tests developed in the PARSEME-FR project.
In this paper we present Arborator-Grew, a collaborative annotation tool for treebank development. Arborator-Grew combines the features of two preexisting tools: Arborator and Grew. Arborator is a widely used collaborative graphical online dependency treebank annotation tool. Grew is a tool for graph querying and rewriting specialized in structures needed in NLP, i.e. syntactic and semantic dependency trees and graphs. Grew also has an online version, Grew-match, where all Universal Dependencies treebanks in their classical, deep and surface-syntactic flavors can be queried. Arborator-Grew is a complete redevelopment and modernization of Arborator, replacing its own internal database storage by a new Grew API, which adds a powerful query tool to Arborator’s existing treebank creation and correction features. This includes complex access control for parallel expert and crowd-sourced annotation, tree comparison visualization, and various exercise modes for teaching and training of annotators. Arborator-Grew opens up new paths of collectively creating, updating, maintaining, and curating syntactic treebanks and semantic graph banks.
This paper presents a French version of the FraCaS test suite. This test suite, originally written in English, contains problems illustrating semantic inference in natural language. We describe linguistic choices we had to make when translating the FraCaS test suite in French, and discuss some of the issues that were raised by the translation. We also report an experiment we ran in order to test both the translation and the logical semantics underlying the problems of the test suite. This provides a way of checking formal semanticists’ hypotheses against actual semantic capacity of speakers (in the present case, French speakers), and allow us to compare the results we obtained with the ones of similar experiments that have been conducted for other languages.
This article presents the results we obtained in crowdsourcing French speakers’ intuition concerning multi-work expressions (MWEs). We developed a slightly gamified crowdsourcing platform, part of which is designed to test users’ ability to identify MWEs with no prior training. The participants perform relatively well at the task, with a recall reaching 65% for MWEs that do not behave as function words.
This article proposes a surface-syntactic annotation scheme called SUD that is near-isomorphic to the Universal Dependencies (UD) annotation scheme while following distributional criteria for defining the dependency tree structure and the naming of the syntactic functions. Rule-based graph transformation grammars allow for a bi-directional transformation of UD into SUD. The back-and-forth transformation can serve as an error-mining tool to assure the intra-language and inter-language coherence of the UD treebanks.
Nous avons précédemment montré qu’il est possible de faire produire des annotations syntaxiques de qualité par des participants à un jeu ayant un but. Nous présentons ici les résultats d’une expérience visant à évaluer leur production sur un corpus plus complexe, en langue de spécialité, en l’occurrence un corpus de textes scientifiques sur l’ADN. Nous déterminons précisément la complexité de ce corpus, puis nous évaluons les annotations en syntaxe de dépendances produites par les joueurs par rapport à une référence mise au point par des experts du domaine.
This article presents the results we obtained on a complex annotation task (that of dependency syntax) using a specifically designed Game with a Purpose, ZombiLingo. We show that with suitable mechanisms (decomposition of the task, training of the players and regular control of the annotation quality during the game), it is possible to obtain annotations whose quality is significantly higher than that obtainable with a parser, provided that enough players participate. The source code of the game and the resulting annotated corpora (for French) are freely available.
We define a deep syntactic representation scheme for French, which abstracts away from surface syntactic variation and diathesis alternations, and describe the annotation of deep syntactic representations on top of the surface dependency trees of the Sequoia corpus. The resulting deep-annotated corpus, named deep-sequoia, is freely available, and hopefully useful for corpus linguistics studies and for training deep analyzers to prepare semantic analysis.
This article presents experiments aiming at mapping the Lexique des Verbes du Français (Lexicon of French Verbs) to FRILEX, a Natural Language Processing (NLP) lexicon based on D ICOVALENCE. The two resources (Lexicon of French Verbs and D ICOVALENCE) were built by linguists, based on very different theories, which makes a direct mapping nearly impossible. We chose to use the examples provided in one of the resource to find implicit links between the two and make them explicit.
Nous montrons comment enrichir une annotation en dépendances syntaxiques au format du French Treebank de Paris 7 en utilisant la réécriture de graphes, en vue du calcul de sa représentation sémantique. Le système de réécriture est composé de règles grammaticales et lexicales structurées en modules. Les règles lexicales utilisent une information de contrôle extraite du lexique des verbes français Dicovalence.
Cet article propose une méthode pour calculer les dépendances syntaxiques d’un énoncé à partir du processus d’analyse en constituants. L’objectif est d’obtenir des dépendances complètes c’est-à-dire contenant toutes les informations nécessaires à la construction de la sémantique. Pour l’analyse en constituants, on utilise le formalisme des grammaires d’interaction : celui-ci place au cœur de la composition syntaxique un mécanisme de saturation de polarités qui peut s’interpréter comme la réalisation d’une relation de dépendance. Formellement, on utilise la notion de motifs de graphes au sens de la réécriture de graphes pour décrire les conditions nécessaires à la création d’une dépendance.
Nous définissons le beta-calcul, un calcul de réécriture de graphes, que nous proposons d’utiliser pour étudier les liens entre différentes représentations linguistiques. Nous montrons comment transformer une analyse syntaxique en une représentation sémantique par la composition de deux jeux de règles de beta-calcul. Le premier souligne l’importance de certaines informations syntaxiques pour le calcul de la sémantique et explicite le lien entre syntaxe et sémantique sous-spécifiée. Le second décompose la recherche de modèles pour les représentations sémantiques sous-spécifiées.
Nous présentons ici l’analyseur syntaxique LEOPAR basé sur les grammaires d’interaction ainsi que d’autres outils utiles pour notre chaîne de traitement syntaxique.
Cet article propose une méthode pour extraire une analyse en dépendances d’un énoncé à partir de son analyse en constituants avec les grammaires d’interaction. Les grammaires d’interaction sont un formalisme grammatical qui exprime l’interaction entre les mots à l’aide d’un système de polarités. Le mécanisme de composition syntaxique est régi par la saturation des polarités. Les interactions s’effectuent entre les constituants, mais les grammaires étant lexicalisées, ces interactions peuvent se traduire sur les mots. La saturation des polarités lors de l’analyse syntaxique d’un énoncé permet d’extraire des relations de dépendances entre les mots, chaque dépendance étant réalisée par une saturation. Les structures de dépendances ainsi obtenues peuvent être vues comme un raffinement de l’analyse habituellement effectuée sous forme d’arbre de dépendance. Plus généralement, ce travail apporte un éclairage nouveau sur les liens entre analyse en constituants et analyse en dépendances.
La production de lexiques est une activité indispensable mais complexe, qui nécessite, quelle que soit la méthode de création utilisée (acquisition automatique ou manuelle), une validation humaine. Nous proposons dans ce but une plate-forme Web librement disponible, appelée Sylva (Systematic lexicon validator). Cette plate-forme a pour caractéristiques principales de permettre une validation multi-niveaux (par des validateurs, puis un expert) et une traçabilité de la ressource. La tâche de l’expert(e) linguiste en est allégée puisqu’il ne lui reste à considérer que les données sur lesquelles il n’y a pas d’accord inter-validateurs.
PrepLex est un lexique des prépositions du français. Il contient les informations utiles à des systèmes d’analyse syntaxique. Il a été construit en comparant puis fusionnant différentes sources d’informations lexicales disponibles. Ce lexique met également en évidence les prépositions ou classes de prépositions qui apparaissent dans la définition des cadres de sous-catégorisation des ressources lexicales qui décrivent la valence des verbes.
Les tables du LADL (Laboratoire d’Automatique Documentaire et Linguistique) contiennent des données électroniques extensives sur les propriétés morphosyntaxiques et syntaxiques des foncteurs syntaxiques du français (verbes, noms, adjectifs). Ces données, dont on sait qu’elles sont nécessaires pour le bon fonctionnement des systèmes de traitement automatique des langues, ne sont cependant que peu utilisées par les systèmes actuels. Dans cet article, nous identifions les raisons de cette lacune et nous proposons une méthode de conversion des tables vers un format mieux approprié au traitement automatique des langues.