Bryan Plummer


2024

pdf bib
Tell Me What’s Next: Textual Foresight for Generic UI Representations
Andrea Burns | Kate Saenko | Bryan Plummer
Findings of the Association for Computational Linguistics: ACL 2024

Mobile app user interfaces (UIs) are rich with action, text, structure, and image content that can be utilized to learn generic UI representations for tasks like automating user commands, summarizing content, and evaluating the accessibility of user interfaces. Prior work has learned strong visual representations with local or global captioning losses, but fails to retain both granularities.To combat this, we propose Textual Foresight, a novel pretraining objective for learning UI screen representations. Textual Foresight generates global text descriptions of future UI states given a current UI and local action taken. Our approach requires joint reasoning over elements and entire screens, resulting in improved UI features: on generation tasks, UI agents trained with Textual Foresight outperform state-of-the-art by 2% with 28x fewer images. We train with our newly constructed mobile app dataset, OpenApp, which results in the first public dataset for app UI representation learning. OpenApp enables new baselines, and we find Textual Foresight improves average task performance over them by 5.7% while having access to 2x less data.

pdf bib
Machine-Generated Text Localization
Zhongping Zhang | Wenda Qin | Bryan Plummer
Findings of the Association for Computational Linguistics: ACL 2024

Machine-Generated Text (MGT) detection aims to identify a piece of text as machine or human written. Prior work has primarily formulated MGT detection as a binary classification task over an entire document, with limited work exploring cases where only part of a document is machine generated. This paper provides the first in-depth study of MGT that localizes the portions of a document that were machine generated. Thus, if a bad actor were to change a key portion of a news article to spread misinformation, whole document MGT detection may fail since the vast majority is human written, but our approach can succeed due to its granular approach. A key challenge in our MGT localization task is that short spans of text, *e.g.*, a single sentence, provides little information indicating if it is machine generated due to its short length. To address this, we leverage contextual information, where we predict whether multiple sentences are machine or human written at once. This enables our approach to identify changes in style or content to boost performance. A gain of 4-13% mean Average Precision (mAP) over prior work demonstrates the effectiveness of approach on five diverse datasets: GoodNews, VisualNews, WikiText, Essay, and WP. We release our implementation at https://github.com/Zhongping-Zhang/MGT_Localization.

2023

pdf bib
A Suite of Generative Tasks for Multi-Level Multimodal Webpage Understanding
Andrea Burns | Krishna Srinivasan | Joshua Ainslie | Geoff Brown | Bryan Plummer | Kate Saenko | Jianmo Ni | Mandy Guo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Webpages have been a rich, scalable resource for vision-language and language only tasks. Yet only pieces of webpages are kept in existing datasets: image-caption pairs, long text articles, or raw HTML, never all in one place. Webpage tasks have resultingly received little attention and structured image-text data left underused. To study multimodal webpage understanding, we introduce the Wikipedia Webpage suite (WikiWeb2M) containing 2M pages with all of the associated image, text, and structure data. We verify its utility on three generative tasks: page description generation, section summarization, and contextual image captioning. We design a novel attention mechanism Prefix Global, which selects the most relevant image and text content as global tokens to attend to the rest of the webpage for context. By using page structure to separate such tokens, it performs better than full attention with lower computational complexity. Extensive experiments show that the new data in WikiWeb2M improves task performance compared to prior work.

pdf bib
Show, Write, and Retrieve: Entity-aware Article Generation and Retrieval
Zhongping Zhang | Yiwen Gu | Bryan Plummer
Findings of the Association for Computational Linguistics: EMNLP 2023

Article comprehension is an important challenge in natural language processing with many applications such as article generation or image-to-article retrieval. Prior work typically encodes all tokens in articles uniformly using pretrained language models. However, in many applications, such as understanding news stories, these articles are based on real-world events and may reference many named entities that are difficult to accurately recognize and predict by language models. To address this challenge, we propose an ENtity-aware article GeneratIoN and rEtrieval (ENGINE) framework, to explicitly incorporate named entities into language models. ENGINE has two main components: a named-entity extraction module to extract named entities from both metadata and embedded images associated with articles, and an entity-aware mechanism that enhances the model’s ability to recognize and predict entity names. We conducted experiments on three public datasets: GoodNews, VisualNews, and WikiText, where our results demonstrate that our model can boost both article generation and article retrieval performance, with a 4-5 perplexity improvement in article generation and a 3-4% boost in recall@1 in article retrieval. We release our implementation at [this http URL](https://github.com/Zhongping-Zhang/ENGINE).

2020

pdf bib
Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News
Reuben Tan | Bryan Plummer | Kate Saenko
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Large-scale dissemination of disinformation online intended to mislead or deceive the general population is a major societal problem. Rapid progression in image, video, and natural language generative models has only exacerbated this situation and intensified our need for an effective defense mechanism. While existing approaches have been proposed to defend against neural fake news, they are generally constrained to the very limited setting where articles only have text and metadata such as the title and authors. In this paper, we introduce the more realistic and challenging task of defending against machine-generated news that also includes images and captions. To identify the possible weaknesses that adversaries can exploit, we create a NeuralNews dataset which is comprised of 4 different types of generated articles as well as conduct a series of human user study experiments based on this dataset. Coupled with providing a relatively effective approach based on detecting visual-semantic inconsistencies, the valuable insights gleaned from our user study experiments and, consequently, this paper will serve as an effective first line of defense and a valuable reference for future work in defending against machine-generated disinformation.