Byounghan Lee


pdf bib
Improving Unsupervised Out-of-domain detection through Pseudo Labeling and Learning
Byounghan Lee | Jaesik Kim | Junekyu Park | Kyung-Ah Sohn
Findings of the Association for Computational Linguistics: EACL 2023

Unsupervised out-of-domain (OOD) detection is a task aimed at discriminating whether given samples are from the in-domain or not, without the categorical labels of in-domain instances. Unlike supervised OOD, as there are no labels for training a classifier, previous works on unsupervised OOD detection adopted the one-class classification (OCC) approach, assuming that the training samples come from a single domain. However, in-domain instances in many real world applications can have a heterogeneous distribution (i.e., across multiple domains or multiple classes). In this case, OCC methods have difficulty in reflecting the categorical information of the domain properly. To tackle this issue, we propose a two-stage framework that leverages the latent categorical information to improve representation learning for textual OOD detection. In the first stage, we train a transformer-based sentence encoder for pseudo labeling by contrastive loss and cluster loss. The second stage is pseudo label learning in which the model is re-trained with pseudo-labels obtained in the first stage. The empirical results on the three datasets show that our two-stage framework significantly outperforms baseline models in more challenging scenarios.


pdf bib
Why Is It Hate Speech? Masked Rationale Prediction for Explainable Hate Speech Detection
Jiyun Kim | Byounghan Lee | Kyung-Ah Sohn
Proceedings of the 29th International Conference on Computational Linguistics

In a hate speech detection model, we should consider two critical aspects in addition to detection performance–bias and explainability. Hate speech cannot be identified based solely on the presence of specific words; the model should be able to reason like humans and be explainable. To improve the performance concerning the two aspects, we propose Masked Rationale Prediction (MRP) as an intermediate task. MRP is a task to predict the masked human rationales–snippets of a sentence that are grounds for human judgment–by referring to surrounding tokens combined with their unmasked rationales. As the model learns its reasoning ability based on rationales by MRP, it performs hate speech detection robustly in terms of bias and explainability. The proposed method generally achieves state-of-the-art performance in various metrics, demonstrating its effectiveness for hate speech detection. Warning: This paper contains samples that may be upsetting.