Biao Qin


2025

pdf bib
Invoke Interfaces Only When Needed: Adaptive Invocation for Large Language Models in Question Answering
Jihao Zhao | Chunlai Zhou | Daixuan Li | Shuaishuai Zu | Biao Qin
Findings of the Association for Computational Linguistics: EMNLP 2025

The collaborative paradigm of large and small language models (LMs) effectively balances performance and cost, yet its pivotal challenge lies in precisely pinpointing the moment of invocation when hallucinations arise in small LMs. Previous optimization efforts primarily focused on post-processing techniques, which were separate from the reasoning process of LMs, resulting in high computational costs and limited effectiveness. In this paper, we propose a practical invocation evaluation metric called AttenHScore, which calculates the accumulation and propagation of hallucinations during the generation process of small LMs, continuously amplifying potential reasoning errors. By dynamically adjusting the detection threshold, we achieve more accurate real-time invocation of large LMs. Additionally, considering the limited reasoning capacity of small LMs, we leverage uncertainty-aware knowledge reorganization to assist them better capture critical information from different text chunks. Extensive experiments reveal that our AttenHScore outperforms most baselines in enhancing real-time hallucination detection capabilities across multiple QA datasets, especially when addressing complex queries. Moreover, our strategies eliminate the need for additional model training and display flexibility in adapting to various transformer-based LMs. Our code is available at https://github.com/Robot2050/AttenHScore.

2024

pdf bib
No Need for Large-Scale Search: Exploring Large Language Models in Complex Knowledge Base Question Answering
Shouhui Wang | Biao Qin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Knowledge Base Question Answering (KBQA) systems play a pivotal role in the domain of natural language processing and information retrieval. Its primary objective is to bridge the gap between natural language questions and structured knowledge representations, especially for complex KBQA. Despite the significant progress in developing effective and interconnected KBQA technologies, the recent emergence of large language models (LLMs) offers an opportunity to address the challenges faced by KBQA systems more efficiently. This study adopts the LLMs, such as Large Language Model Meta AI (LLaMA), as a channel to connect natural language questions with structured knowledge representations and proposes a Three-step Fine-tune Strategy based on large language model to implement the KBQA system (TFS-KBQA). This method achieves direct conversion from natural language questions to structured knowledge representations, thereby overcoming the limitations of existing KBQA methods, such as addressing large search and reasoning spaces and ranking massive candidates. To evaluate the effectiveness of the proposed method, we conduct experiments using three popular complex KBQA datasets. The results achieve state-of-the-art performance across all three datasets, with particularly notable results for the WebQuestionSP dataset, which achieves an F1 value of 79.9%.