Although pre-training has become a prevalent approach for addressing various biomedical tasks, the current efficacy of pre-trained models is hindered by their reliance on a limited scope of medical sources. This limitation results in data scarcity during pre-training and restricts the range of applicable downstream tasks. In response to these challenges, we develop MedCSP, a new pre-training strategy designed to bridge the gap between multimodal medical sources. MedCSP employs modality-level aggregation to unify patient data within individual sources. Additionally, leveraging temporal information and diagnosis history, MedCSP effectively captures explicit and implicit correlations between patients across different sources. To evaluate the proposed strategy, we conduct comprehensive experiments, where the experiments are based on 6 modalities from 2 real-world medical data sources, and MedCSP is evaluated on 4 tasks against 19 baselines, marking an initial yet essential step towards cross-source modeling in the medical domain.
Pretrained large language models (LLMs) have excelled in a variety of natural language processing (NLP) tasks, including summarization, question answering, and translation. However, LLMs pose significant security risks due to their tendency to memorize training data, leading to potential privacy breaches and copyright infringement. Therefore, accurate measurement of the memorization is essential to evaluate and mitigate these potential risks. However, previous attempts to characterize memorization are constrained by either using prefixes only or by prepending a constant soft prompt to the prefixes, which cannot react to changes in input. To address this challenge, we propose a novel method for estimating LLM memorization using dynamic, prefix-dependent soft prompts. Our approach involves training a transformer-based generator to produce soft prompts that adapt to changes in input, thereby enabling more accurate extraction of memorized data. Our method not only addresses the limitations of previous methods but also demonstrates superior performance in diverse experimental settings compared to state-of-the-art techniques. In particular, our method can achieve the maximum relative improvement of 135.3% and 39.8% over the vanilla baseline on average in terms of *discoverable memorization rate* for the text generation task and code generation task, respectively. Our code is available at https://github.com/wangger/llm-memorization-dsp.
The prevalent use of large language models (LLMs) in various domains has drawn attention to the issue of “hallucination”, which refers to instances where LLMs generate factually inaccurate or ungrounded information. Existing techniques usually identify hallucinations post-generation that cannot prevent their occurrence and suffer from inconsistent performance due to the influence of the instruction format and model style. In this paper, we introduce a novel pre-detection self-evaluation technique, referred to as SELF-FAMILIARITY, which focuses on evaluating the model’s familiarity with the concepts present in the input instruction and withholding the generation of response in case of unfamiliar concepts under the zero-resource setting, where external ground-truth or background information is not available. We also propose a new dataset Concept-7 focusing on the hallucinations caused by limited inner knowledge. We validate SELF-FAMILIARITY across four different large language models, demonstrating consistently superior performance compared to existing techniques. Our findings propose a significant shift towards preemptive strategies for hallucination mitigation in LLM assistants, promising improvements in reliability, applicability, and interpretability.
Parameter Efficient Fine-Tuning (PEFT) offers an efficient solution for fine-tuning large pretrained language models for downstream tasks. However, most PEFT strategies are manually designed, often resulting in suboptimal performance. Recent automatic PEFT approaches aim to address this but face challenges such as search space entanglement, inefficiency, and lack of integration between parameter budgets and search processes. To overcome these issues, we introduce a novel Budget-guided Iterative search strategy for automatic PEFT (BIPEFT), significantly enhancing search efficiency. BIPEFT employs a new iterative search strategy to disentangle the binary module and rank dimension search spaces. Additionally, we design early selection strategies based on parameter budgets, accelerating the learning process by gradually removing unimportant modules and fixing rank dimensions. Extensive experiments on public benchmarks demonstrate the superior performance of BIPEFT in achieving efficient and effective PEFT for downstream tasks with a low parameter budget.
Machine learning shows promise in predicting the outcome of legal cases, but most research has concentrated on civil law cases rather than case law systems. We identified two unique challenges in making legal case outcome predictions with case law. First, it is crucial to identify relevant precedent cases that serve as fundamental evidence for judges during decision-making. Second, it is necessary to consider the evolution of legal principles over time, as early cases may adhere to different legal contexts. In this paper, we proposed a new framework named PILOT (PredictIng Legal case OuTcome) for case outcome prediction. It comprises two modules for relevant case retrieval and temporal pattern handling, respectively. To benchmark the performance of existing legal case outcome prediction models, we curated a dataset from a large-scale case law database. We demonstrate the importance of accurately identifying precedent cases and mitigating the temporal shift when making predictions for case law, as our method shows a significant improvement over the prior methods that focus on civil law case outcome predictions.
The advent of large language models (LLMs) has significantly advanced natural language processing tasks like text summarization. However, their large size and computational demands, coupled with privacy concerns in data transmission, limit their use in resource-constrained and privacy-centric settings. To overcome this, we introduce TriSum, a framework for distilling LLMs’ text summarization abilities into a compact, local model. Initially, LLMs extract a set of aspect-triple rationales and summaries, which are refined using a dual-scoring method for quality. Next, a smaller local model is trained with these tasks, employing a curriculum learning strategy that evolves from simple to complex tasks. Our method enhances local model performance on various benchmarks (CNN/DailyMail, XSum, and ClinicalTrial), outperforming baselines by 4.5%, 8.5%, and 7.4%, respectively. It also improves interpretability by providing insights into the summarization rationale.
Clinical trials are critical for drug development. Constructing the appropriate eligibility criteria (i.e., the inclusion/exclusion criteria for patient recruitment) is essential for the trial’s success. Proper design of clinical trial protocols should consider similar precedent trials and their eligibility criteria to ensure sufficient patient coverage. In this paper, we present a method named AutoTrial to aid the design of clinical eligibility criteria using language models. It allows (1) controllable generation under instructions via a hybrid of discrete and neural prompting, (2) scalable knowledge incorporation via in-context learning, and (3) explicit reasoning chains to provide rationales for understanding the outputs. Experiments on over 70K clinical trials verify that AutoTrial generates high-quality criteria texts that are fluent and coherent and with high accuracy in capturing the relevant clinical concepts to the target trial. It is noteworthy that our method, with a much smaller parameter size, gains around 60% winning rate against the GPT-3.5 baselines via human evaluations.
Patients with low health literacy usually have difficulty understanding medical jargon and the complex structure of professional medical language. Although some studies are proposed to automatically translate expert language into layperson-understandable language, only a few of them focus on both accuracy and readability aspects simultaneously in the clinical domain. Thus, simplification of the clinical language is still a challenging task, but unfortunately, it is not yet fully addressed in previous work. To benchmark this task, we construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches. Besides, we propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance compared with eight strong baselines. To fairly evaluate the performance, we also propose three specific evaluation metrics. Experimental results demonstrate the utility of the annotated MedLane dataset and the effectiveness of the proposed model DECLARE.