Cao Xiao


pdf bib
AutoTrial: Prompting Language Models for Clinical Trial Design
Zifeng Wang | Cao Xiao | Jimeng Sun
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Clinical trials are critical for drug development. Constructing the appropriate eligibility criteria (i.e., the inclusion/exclusion criteria for patient recruitment) is essential for the trial’s success. Proper design of clinical trial protocols should consider similar precedent trials and their eligibility criteria to ensure sufficient patient coverage. In this paper, we present a method named AutoTrial to aid the design of clinical eligibility criteria using language models. It allows (1) controllable generation under instructions via a hybrid of discrete and neural prompting, (2) scalable knowledge incorporation via in-context learning, and (3) explicit reasoning chains to provide rationales for understanding the outputs. Experiments on over 70K clinical trials verify that AutoTrial generates high-quality criteria texts that are fluent and coherent and with high accuracy in capturing the relevant clinical concepts to the target trial. It is noteworthy that our method, with a much smaller parameter size, gains around 60% winning rate against the GPT-3.5 baselines via human evaluations.


pdf bib
Benchmarking Automated Clinical Language Simplification: Dataset, Algorithm, and Evaluation
Junyu Luo | Junxian Lin | Chi Lin | Cao Xiao | Xinning Gui | Fenglong Ma
Proceedings of the 29th International Conference on Computational Linguistics

Patients with low health literacy usually have difficulty understanding medical jargon and the complex structure of professional medical language. Although some studies are proposed to automatically translate expert language into layperson-understandable language, only a few of them focus on both accuracy and readability aspects simultaneously in the clinical domain. Thus, simplification of the clinical language is still a challenging task, but unfortunately, it is not yet fully addressed in previous work. To benchmark this task, we construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches. Besides, we propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance compared with eight strong baselines. To fairly evaluate the performance, we also propose three specific evaluation metrics. Experimental results demonstrate the utility of the annotated MedLane dataset and the effectiveness of the proposed model DECLARE.


pdf bib
Fusion: Towards Automated ICD Coding via Feature Compression
Junyu Luo | Cao Xiao | Lucas Glass | Jimeng Sun | Fenglong Ma
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021