We present new supertaggers trained on English HPSG-based treebanks and test the effects of the best tagger on parsing speed and accuracy. HPSG treebanks are produced automatically by large manually built grammars and feature high-quality annotation based on a well-developed linguistic theory. The English Resource Grammar treebanks include diverse and challenging test datasets, beyond the usual WSJ section 23 and Wikipedia data. HPSG supertagging has previously relied on MaxEnt-based models. We use SVM and neural CRF- and BERT-based methods and show that both SVM and neural supertaggers achieve considerably higher accuracy compared to the baseline and lead to an increase not only in the parsing speed but also the parser accuracy with respect to gold dependency structures. Our fine-tuned BERT-based tagger achieves 97.26% accuracy on 950 sentences from WSJ23 and 93.88% on the out-of-domain technical essay The Cathedral and the Bazaar. We present experiments with integrating the best supertagger into an HPSG parser and observe a speedup of a factor of 3 with respect to the system which uses no tagging at all, as well as large recall gains and an overall precision gain. We also compare our system to an existing integrated tagger and show that although the well-integrated tagger remains the fastest, our experimental system can be more accurate. Finally, we hope that the diverse and difficult datasets we used for evaluation will gain more popularity in the field: we show that results can differ depending on the dataset, even if it is an in-domain one. We contribute the complete datasets reformatted for Huggingface token classification.
Various linearizations have been proposed to cast syntactic dependency parsing as sequence labeling. However, these approaches do not support more complex graph-based representations, such as semantic dependencies or enhanced universal dependencies, as they cannot handle reentrancy or cycles. By extending them, we define a range of unbounded and bounded linearizations that can be used to cast graph parsing as a tagging task, enlarging the toolbox of problems that can be solved under this paradigm. Experimental results on semantic dependency and enhanced UD parsing show that with a good choice of encoding, sequence-labeling semantic dependency parsers combine high efficiency with accuracies close to the state of the art, in spite of their simplicity.
Recent advances in neural networks based language representation made it possible for pretrained language models to outperform previous models in many downstream natural language processing (NLP) tasks. These pretrained language models have also shown that if large enough, they exhibit good few-shot abilities, which is especially beneficial for low-resource scenarios. In this respect, although there are some large-scale multilingual pretrained language models available, language-specific pretrained models have demonstrated to be more accurate for monolingual evaluation setups. In this work, we present BERTbek - pretrained language models based on the BERT (Bidirectional Encoder Representations from Transformers) architecture for the low-resource Uzbek language. We also provide a comprehensive evaluation of the models on a number of NLP tasks: sentiment analysis, multi-label topic classification, and named entity recognition, comparing the models with various machine learning methods as well as multilingual BERT (mBERT). Experimental results indicate that our models outperform mBERT and other task-specific baseline models in all three tasks. Additionally, we also show the impact of training data size and quality on the downstream performance of BERT models, by training three different models with different text sources and corpus sizes.
We study incremental constituent parsers to assess their capacity to output trees based on prefix representations alone. Guided by strictly left-to-right generative language models and tree-decoding modules, we build parsers that adhere to a strong definition of incrementality across languages. This builds upon work that asserted incrementality, but that mostly only enforced it on either the encoder or the decoder. Finally, we conduct an analysis against non-incremental and partially incremental models.
We present the latest version of the Spanish Resource Grammar (SRG), a grammar of Spanish implemented in the HPSG formalism. Such grammars encode a complex set of hypotheses about syntax making them a resource for empirical testing of linguistic theory. They also encode a strict notion of grammaticality which makes them a resource for natural language processing applications in computer-assisted language learning. This version of the SRG uses the recent version of the Freeling morphological analyzer and is released along with an automatically created, manually verified treebank of 2,291 sentences. We explain the treebanking process, emphasizing how it is different from treebanking with manual annotation and how it contributes to empirically-driven development of syntactic theory. The treebanks’ high level of consistency and detail makes them a resource for training high-quality semantic parsers and generally systems that benefit from precise and detailed semantics. Finally, we present the grammar’s coverage and overgeneration on 100 sentences from a learner corpus, a new research line related to developing methodologies for robust empirical evaluation of hypotheses in second language acquisition.
We evaluate a range of recent LLMs on English creative writing, a challenging and complex task that requires imagination, coherence, and style. We use a difficult, open-ended scenario chosen to avoid training data reuse: an epic narration of a single combat between Ignatius J. Reilly, the protagonist of the Pulitzer Prize-winning novel A Confederacy of Dunces (1980), and a pterodactyl, a prehistoric flying reptile. We ask several LLMs and humans to write such a story and conduct a human evalution involving various criteria such as fluency, coherence, originality, humor, and style. Our results show that some state-of-the-art commercial LLMs match or slightly outperform our writers in most dimensions; whereas open-source LLMs lag behind. Humans retain an edge in creativity, while humor shows a binary divide between LLMs that can handle it comparably to humans and those that fail at it. We discuss the implications and limitations of our study and suggest directions for future research.
We introduce an encoding for parsing as sequence labeling that can represent any projective dependency tree as a sequence of 4-bit labels, one per word. The bits in each word’s label represent (1) whether it is a right or left dependent, (2) whether it is the outermost (left/right) dependent of its parent, (3) whether it has any left children and (4) whether it has any right children. We show that this provides an injective mapping from trees to labels that can be encoded and decoded in linear time. We then define a 7-bit extension that represents an extra plane of arcs, extending the coverage to almost full non-projectivity (over 99.9% empirical arc coverage). Results on a set of diverse treebanks show that our 7-bit encoding obtains substantial accuracy gains over the previously best-performing sequence labeling encodings.
Semantic relatedness between words is one of the core concepts in natural language processing, thus making semantic evaluation an important task. In this paper, we present a semantic model evaluation dataset: SimRelUz - a collection of similarity and relatedness scores of word pairs for the low-resource Uzbek language. The dataset consists of more than a thousand pairs of words carefully selected based on their morphological features, occurrence frequency, semantic relation, as well as annotated by eleven native Uzbek speakers from different age groups and gender. We also paid attention to the problem of dealing with rare words and out-of-vocabulary words to thoroughly evaluate the robustness of semantic models.
We contribute to the discussion on parsing performance in NLP by introducing a measurement that evaluates the differences between the distributions of edge displacement (the directed distance of edges) seen in training and test data. We hypothesize that this measurement will be related to differences observed in parsing performance across treebanks. We motivate this by building upon previous work and then attempt to falsify this hypothesis by using a number of statistical methods. We establish that there is a statistical correlation between this measurement and parsing performance even when controlling for potential covariants. We then use this to establish a sampling technique that gives us an adversarial and complementary split. This gives an idea of the lower and upper bounds of parsing systems for a given treebank in lieu of freshly sampled data. In a broader sense, the methodology presented here can act as a reference for future correlation-based exploratory work in NLP.
PoS tags, once taken for granted as a useful resource for syntactic parsing, have become more situational with the popularization of deep learning. Recent work on the impact of PoS tags on graph- and transition-based parsers suggests that they are only useful when tagging accuracy is prohibitively high, or in low-resource scenarios. However, such an analysis is lacking for the emerging sequence labeling parsing paradigm, where it is especially relevant as some models explicitly use PoS tags for encoding and decoding. We undertake a study and uncover some trends. Among them, PoS tags are generally more useful for sequence labeling parsers than for other paradigms, but the impact of their accuracy is highly encoding-dependent, with the PoS-based head-selection encoding being best only when both tagging accuracy and resource availability are high.
We propose a morphology-based method for low-resource (LR) dependency parsing. We train a morphological inflector for target LR languages, and apply it to related rich-resource (RR) treebanks to create cross-lingual (x-inflected) treebanks that resemble the target LR language. We use such inflected treebanks to train parsers in zero- (training on x-inflected treebanks) and few-shot (training on x-inflected and target language treebanks) setups. The results show that the method sometimes improves the baselines, but not consistently.
This paper addressed the problem of structured sentiment analysis using a bi-affine semantic dependency parser, large pre-trained language models, and publicly available translation models. For the monolingual setup, we considered: (i) training on a single treebank, and (ii) relaxing the setup by training on treebanks coming from different languages that can be adequately processed by cross-lingual language models. For the zero-shot setup and a given target treebank, we relied on: (i) a word-level translation of available treebanks in other languages to get noisy, unlikely-grammatical, but annotated data (we release as much of it as licenses allow), and (ii) merging those translated treebanks to obtain training data. In the post-evaluation phase, we also trained cross-lingual models that simply merged all the English treebanks and did not use word-level translations, and yet obtained better results. According to the official results, we ranked 8th and 9th in the monolingual and cross-lingual setups.
Treebank selection for parsing evaluation and the spurious effects that might arise from a biased choice have not been explored in detail. This paper studies how evaluating on a single subset of treebanks can lead to weak conclusions. First, we take a few contrasting parsers, and run them on subsets of treebanks proposed in previous work, whose use was justified (or not) on criteria such as typology or data scarcity. Second, we run a large-scale version of this experiment, create vast amounts of random subsets of treebanks, and compare on them many parsers whose scores are available. The results show substantial variability across subsets and that although establishing guidelines for good treebank selection is hard, some inadequate strategies can be easily avoided.
Søgaard (2020) obtained results suggesting the fraction of trees occurring in the test data isomorphic to trees in the training set accounts for a non-trivial variation in parser performance. Similar to other statistical analyses in NLP, the results were based on evaluating linear regressions. However, the study had methodological issues and was undertaken using a small sample size leading to unreliable results. We present a replication study in which we also bin sentences by length and find that only a small subset of sentences vary in performance with respect to graph isomorphism. Further, the correlation observed between parser performance and graph isomorphism in the wild disappears when controlling for covariants. However, in a controlled experiment, where covariants are kept fixed, we do observe a correlation. We suggest that conclusions drawn from statistical analyses like this need to be tempered and that controlled experiments can complement them by more readily teasing factors apart.
We present an error analysis of neural UPOS taggers to evaluate why using gold tags has such a large positive contribution to parsing performance while using predicted UPOS either harms performance or offers a negligible improvement. We also evaluate what neural dependency parsers implicitly learn about word types and how this relates to the errors taggers make, to explain the minimal impact using predicted tags has on parsers. We then mask UPOS tags based on errors made by taggers to tease away the contribution of UPOS tags that taggers succeed and fail to classify correctly and the impact of tagging errors.
We evaluate the efficacy of predicted UPOS tags as input features for dependency parsers in lower resource settings to evaluate how treebank size affects the impact tagging accuracy has on parsing performance. We do this for real low resource universal dependency treebanks, artificially low resource data with varying treebank sizes, and for very small treebanks with varying amounts of augmented data. We find that predicted UPOS tags are somewhat helpful for low resource treebanks, especially when fewer fully-annotated trees are available. We also find that this positive impact diminishes as the amount of data increases.
We evaluate three leading dependency parser systems from different paradigms on a small yet diverse subset of languages in terms of their accuracy-efficiency Pareto front. As we are interested in efficiency, we evaluate core parsers without pretrained language models (as these are typically huge networks and would constitute most of the compute time) or other augmentations that can be transversally applied to any of them. Biaffine parsing emerges as a well-balanced default choice, with sequence-labelling parsing being preferable if inference speed (but not training energy cost) is the priority.
We present the system submission from the FASTPARSE team for the EUD Shared Task at IWPT 2021. We engaged in the task last year by focusing on efficiency. This year we have focused on experimenting with new ideas on a limited time budget. Our system is based on splitting the EUD graph into several trees, based on linguistic criteria. We predict these trees using a sequence-labelling parser and combine them into an EUD graph. The results were relatively poor, although not a total disaster and could probably be improved with some polishing of the system’s rough edges.
Discontinuous constituent parsers have always lagged behind continuous approaches in terms of accuracy and speed, as the presence of constituents with discontinuous yield introduces extra complexity to the task. However, a discontinuous tree can be converted into a continuous variant by reordering tokens. Based on that, we propose to reduce discontinuous parsing to a continuous problem, which can then be directly solved by any off-the-shelf continuous parser. To that end, we develop a Pointer Network capable of accurately generating the continuous token arrangement for a given input sentence and define a bijective function to recover the original order. Experiments on the main benchmarks with two continuous parsers prove that our approach is on par in accuracy with purely discontinuous state-of-the-art algorithms, but considerably faster.
We present a bracketing-based encoding that can be used to represent any 2-planar dependency tree over a sentence of length n as a sequence of n labels, hence providing almost total coverage of crossing arcs in sequence labeling parsing. First, we show that existing bracketing encodings for parsing as labeling can only handle a very mild extension of projective trees. Second, we overcome this limitation by taking into account the well-known property of 2-planarity, which is present in the vast majority of dependency syntactic structures in treebanks, i.e., the arcs of a dependency tree can be split into two planes such that arcs in a given plane do not cross. We take advantage of this property to design a method that balances the brackets and that encodes the arcs belonging to each of those planes, allowing for almost unrestricted non-projectivity (∼99.9% coverage) in sequence labeling parsing. The experiments show that our linearizations improve over the accuracy of the original bracketing encoding in highly non-projective treebanks (on average by 0.4 LAS), while achieving a similar speed. Also, they are especially suitable when PoS tags are not used as input parameters to the models.
We define a mapping from transition-based parsing algorithms that read sentences from left to right to sequence labeling encodings of syntactic trees. This not only establishes a theoretical relation between transition-based parsing and sequence-labeling parsing, but also provides a method to obtain new encodings for fast and simple sequence labeling parsing from the many existing transition-based parsers for different formalisms. Applying it to dependency parsing, we implement sequence labeling versions of four algorithms, showing that they are learnable and obtain comparable performance to existing encodings.
The lack of annotated data is a big issue for building reliable NLP systems for most of the world’s languages. But this problem can be alleviated by automatic data generation. In this paper, we present a new data augmentation method for artificially creating new dependency-annotated sentences. The main idea is to swap subtrees between annotated sentences while enforcing strong constraints on those trees to ensure maximal grammaticality of the new sentences. We also propose a method to perform low-resource experiments using resource-rich languages by mimicking low-resource languages by sampling sentences under a low-resource distribution. In a series of experiments, we show that our newly proposed data augmentation method outperforms previous proposals using the same basic inputs.
Although the roguelike video game genre has a large community of fans (both players and developers) and the graphic aspect of these games is usually given little relevance (ASCII-based graphics are not rare even today), their accessibility for blind players and other visually-impaired users remains a pending issue. In this document, we describe an initiative for the development of roguelikes adapted to visually-impaired players by using Natural Language Processing techniques, together with the first completed games resulting from it. These games were developed as Bachelor’s and Master’s theses. Our approach consists in integrating a multilingual module that, apart from the classic ASCII-based graphical interface, automatically generates text descriptions of what is happening within the game. The visually-impaired user can then read such descriptions by means of a screen reader. In these projects we seek expressivity and variety in the descriptions, so we can offer the users a fun roguelike experience that does not sacrifice any of the key characteristics that define the genre. Moreover, we intend to make these projects easy to extend to other languages, thus avoiding costly and complex solutions. KEYWORDS: Natural Language Generation, roguelikes, visually-impaired users
There has been an increasing interest in learning cross-lingual word embeddings to transfer knowledge obtained from a resource-rich language, such as English, to lower-resource languages for which annotated data is scarce, such as Turkish, Russian, and many others. In this paper, we present the first viability study of established techniques to align monolingual embedding spaces for Turkish, Uzbek, Azeri, Kazakh and Kyrgyz, members of the Turkic family which is heavily affected by the low-resource constraint. Those techniques are known to require little explicit supervision, mainly in the form of bilingual dictionaries, hence being easily adaptable to different domains, including low-resource ones. We obtain new bilingual dictionaries and new word embeddings for these languages and show the steps for obtaining cross-lingual word embeddings using state-of-the-art techniques. Then, we evaluate the results using the bilingual dictionary induction task. Our experiments confirm that the obtained bilingual dictionaries outperform previously-available ones, and that word embeddings from a low-resource language can benefit from resource-rich closely-related languages when they are aligned together. Furthermore, evaluation on an extrinsic task (Sentiment analysis on Uzbek) proves that monolingual word embeddings can, although slightly, benefit from cross-lingual alignments.
A wide variety of transition-based algorithms are currently used for dependency parsers. Empirical studies have shown that performance varies across different treebanks in such a way that one algorithm outperforms another on one treebank and the reverse is true for a different treebank. There is often no discernible reason for what causes one algorithm to be more suitable for a certain treebank and less so for another. In this paper we shed some light on this by introducing the concept of an algorithm’s inherent dependency displacement distribution. This characterises the bias of the algorithm in terms of dependency displacement, which quantify both distance and direction of syntactic relations. We show that the similarity of an algorithm’s inherent distribution to a treebank’s displacement distribution is clearly correlated to the algorithm’s parsing performance on that treebank, specificially with highly significant and substantial correlations for the predominant sentence lengths in Universal Dependency treebanks. We also obtain results which show a more discrete analysis of dependency displacement does not result in any meaningful correlations.
Sequence-to-sequence constituent parsing requires a linearization to represent trees as sequences. Top-down tree linearizations, which can be based on brackets or shift-reduce actions, have achieved the best accuracy to date. In this paper, we show that these results can be improved by using an in-order linearization instead. Based on this observation, we implement an enriched in-order shift-reduce linearization inspired by Vinyals et al. (2015)’s approach, achieving the best accuracy to date on the English PTB dataset among fully-supervised single-model sequence-to-sequence constituent parsers. Finally, we apply deterministic attention mechanisms to match the speed of state-of-the-art transition-based parsers, thus showing that sequence-to-sequence models can match them, not only in accuracy, but also in speed.
Transition-based parsers implemented with Pointer Networks have become the new state of the art in dependency parsing, excelling in producing labelled syntactic trees and outperforming graph-based models in this task. In order to further test the capabilities of these powerful neural networks on a harder NLP problem, we propose a transition system that, thanks to Pointer Networks, can straightforwardly produce labelled directed acyclic graphs and perform semantic dependency parsing. In addition, we enhance our approach with deep contextualized word embeddings extracted from BERT. The resulting system not only outperforms all existing transition-based models, but also matches the best fully-supervised accuracy to date on the SemEval 2015 Task 18 datasets among previous state-of-the-art graph-based parsers.
We present an analysis on the effect UPOS accuracy has on parsing performance. Results suggest that leveraging UPOS tags as fea-tures for neural parsers requires a prohibitively high tagging accuracy and that the use of gold tags offers a non-linear increase in performance, suggesting some sort of exceptionality. We also investigate what aspects of predicted UPOS tags impact parsing accuracy the most, highlighting some potentially meaningful linguistic facets of the problem.
The carbon footprint of natural language processing research has been increasing in recent years due to its reliance on large and inefficient neural network implementations. Distillation is a network compression technique which attempts to impart knowledge from a large model to a smaller one. We use teacher-student distillation to improve the efficiency of the Biaffine dependency parser which obtains state-of-the-art performance with respect to accuracy and parsing speed (Dozat and Manning, 2017). When distilling to 20% of the original model’s trainable parameters, we only observe an average decrease of ∼1 point for both UAS and LAS across a number of diverse Universal Dependency treebanks while being 2.30x (1.19x) faster than the baseline model on CPU (GPU) at inference time. We also observe a small increase in performance when compressing to 80% for some treebanks. Finally, through distillation we attain a parser which is not only faster but also more accurate than the fastest modern parser on the Penn Treebank.
We present the system submission from the FASTPARSE team for the EUD Shared Task at IWPT 2020. We engaged with the task by focusing on efficiency. For this we considered training costs and inference efficiency. Our models are a combination of distilled neural dependency parsers and a rule-based system that projects UD trees into EUD graphs. We obtained an average ELAS of 74.04 for our official submission, ranking 4th overall.
This paper reduces discontinuous parsing to sequence labeling. It first shows that existing reductions for constituent parsing as labeling do not support discontinuities. Second, it fills this gap and proposes to encode tree discontinuities as nearly ordered permutations of the input sequence. Third, it studies whether such discontinuous representations are learnable. The experiments show that despite the architectural simplicity, under the right representation, the models are fast and accurate.
We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.
We use parsing as sequence labeling as a common framework to learn across constituency and dependency syntactic abstractions. To do so, we cast the problem as multitask learning (MTL). First, we show that adding a parsing paradigm as an auxiliary loss consistently improves the performance on the other paradigm. Secondly, we explore an MTL sequence labeling model that parses both representations, at almost no cost in terms of performance and speed. The results across the board show that on average MTL models with auxiliary losses for constituency parsing outperform single-task ones by 1.05 F1 points, and for dependency parsing by 0.62 UAS points.
We propose a novel transition-based algorithm that straightforwardly parses sentences from left to right by building n attachments, with n being the length of the input sentence. Similarly to the recent stack-pointer parser by Ma et al. (2018), we use the pointer network framework that, given a word, can directly point to a position from the sentence. However, our left-to-right approach is simpler than the original top-down stack-pointer parser (not requiring a stack) and reduces transition sequence length in half, from 2n-1 actions to n. This results in a quadratic non-projective parser that runs twice as fast as the original while achieving the best accuracy to date on the English PTB dataset (96.04% UAS, 94.43% LAS) among fully-supervised single-model dependency parsers, and improves over the former top-down transition system in the majority of languages tested.
We recast dependency parsing as a sequence labeling problem, exploring several encodings of dependency trees as labels. While dependency parsing by means of sequence labeling had been attempted in existing work, results suggested that the technique was impractical. We show instead that with a conventional BILSTM-based model it is possible to obtain fast and accurate parsers. These parsers are conceptually simple, not needing traditional parsing algorithms or auxiliary structures. However, experiments on the PTB and a sample of UD treebanks show that they provide a good speed-accuracy tradeoff, with results competitive with more complex approaches.
We explore the challenge of action prediction from textual descriptions of scenes, a testbed to approximate whether text inference can be used to predict upcoming actions. As a case of study, we consider the world of the Harry Potter fantasy novels and inferring what spell will be cast next given a fragment of a story. Spells act as keywords that abstract actions (e.g. ‘Alohomora’ to open a door) and denote a response to the environment. This idea is used to automatically build HPAC, a corpus containing 82,836 samples and 85 actions. We then evaluate different baselines. Among the tested models, an LSTM-based approach obtains the best performance for frequent actions and large scene descriptions, but approaches such as logistic regression behave well on infrequent actions.
We explore whether it is possible to leverage eye-tracking data in an RNN dependency parser (for English) when such information is only available during training - i.e. no aggregated or token-level gaze features are used at inference time. To do so, we train a multitask learning model that parses sentences as sequence labeling and leverages gaze features as auxiliary tasks. Our method also learns to train from disjoint datasets, i.e. it can be used to test whether already collected gaze features are useful to improve the performance on new non-gazed annotated treebanks. Accuracy gains are modest but positive, showing the feasibility of the approach. It can serve as a first step towards architectures that can better leverage eye-tracking data or other complementary information available only for training sentences, possibly leading to improvements in syntactic parsing.
Non-projective parsing can be useful to handle cycles and reentrancy in AMR graphs. We explore this idea and introduce a greedy left-to-right non-projective transition-based parser. At each parsing configuration, an oracle decides whether to create a concept or whether to connect a pair of existing concepts. The algorithm handles reentrancy and arbitrary cycles natively, i.e. within the transition system itself. The model is evaluated on the LDC2015E86 corpus, obtaining results close to the state of the art, including a Smatch of 64%, and showing good behavior on reentrant edges.
We propose an efficient dynamic oracle for training the 2-Planar transition-based parser, a linear-time parser with over 99% coverage on non-projective syntactic corpora. This novel approach outperforms the static training strategy in the vast majority of languages tested and scored better on most datasets than the arc-hybrid parser enhanced with the Swap transition, which can handle unrestricted non-projectivity.
We generalize Cohen, Gómez-Rodríguez, and Satta’s (2011) parser to a family of non-projective transition-based dependency parsers allowing polynomial-time exact inference. This includes novel parsers with better coverage than Cohen et al. (2011), and even a variant that reduces time complexity to O(n6), improving over the known bounds in exact inference for non-projective transition-based parsing. We hope that this piece of theoretical work inspires design of novel transition systems with better coverage and better run-time guarantees.
We present a novel transition system, based on the Covington non-projective parser, introducing non-local transitions that can directly create arcs involving nodes to the left of the current focus positions. This avoids the need for long sequences of No-Arcs transitions to create long-distance arcs, thus alleviating error propagation. The resulting parser outperforms the original version and achieves the best accuracy on the Stanford Dependencies conversion of the Penn Treebank among greedy transition-based parsers.
Shi, Huang, and Lee (2017a) obtained state-of-the-art results for English and Chinese dependency parsing by combining dynamic-programming implementations of transition-based dependency parsers with a minimal set of bidirectional LSTM features. However, their results were limited to projective parsing. In this paper, we extend their approach to support non-projectivity by providing the first practical implementation of the MH₄ algorithm, an O(n4) mildly nonprojective dynamic-programming parser with very high coverage on non-projective treebanks. To make MH₄ compatible with minimal transition-based feature sets, we introduce a transition-based interpretation of it in which parser items are mapped to sequences of transitions. We thus obtain the first implementation of global decoding for non-projective transition-based parsing, and demonstrate empirically that it is effective than its projective counterpart in parsing a number of highly non-projective languages.
The usage of part-of-day nouns, such as ‘night’, and their time-specific greetings (‘good night’), varies across languages and cultures. We show the possibilities that Twitter offers for studying the semantics of these terms and its variability between countries. We mine a worldwide sample of multilingual tweets with temporal greetings, and study how their frequencies vary in relation with local time. The results provide insights into the semantics of these temporal expressions and the cultural and sociological factors influencing their usage.
We explore whether it is possible to build lighter parsers, that are statistically equivalent to their corresponding standard version, for a wide set of languages showing different structures and morphologies. As testbed, we use the Universal Dependencies and transition-based dependency parsers trained on feed-forward networks. For these, most existing research assumes de facto standard embedded features and relies on pre-computation tricks to obtain speed-ups. We explore how these features and their size can be reduced and whether this translates into speed-ups with a negligible impact on accuracy. The experiments show that grand-daughter features can be removed for the majority of treebanks without a significant (negative or positive) LAS difference. They also show how the size of the embeddings can be notably reduced.
We introduce novel dynamic oracles for training two of the most accurate known shift-reduce algorithms for constituent parsing: the top-down and in-order transition-based parsers. In both cases, the dynamic oracles manage to notably increase their accuracy, in comparison to that obtained by performing classic static training. In addition, by improving the performance of the state-of-the-art in-order shift-reduce parser, we achieve the best accuracy to date (92.0 F1) obtained by a fully-supervised single-model greedy shift-reduce constituent parser on the WSJ benchmark.
We introduce a method to reduce constituent parsing to sequence labeling. For each word wt, it generates a label that encodes: (1) the number of ancestors in the tree that the words wt and wt+1 have in common, and (2) the nonterminal symbol at the lowest common ancestor. We first prove that the proposed encoding function is injective for any tree without unary branches. In practice, the approach is made extensible to all constituency trees by collapsing unary branches. We then use the PTB and CTB treebanks as testbeds and propose a set of fast baselines. We achieve 90% F-score on the PTB test set, outperforming the Vinyals et al. (2015) sequence-to-sequence parser. In addition, sacrificing some accuracy, our approach achieves the fastest constituent parsing speeds reported to date on PTB by a wide margin.
The LyS-FASTPARSE team present BIST-COVINGTON, a neural implementation of the Covington (2001) algorithm for non-projective dependency parsing. The bidirectional LSTM approach by Kiperwasser and Goldberg (2016) is used to train a greedy parser with a dynamic oracle to mitigate error propagation. The model participated in the CoNLL 2017 UD Shared Task. In spite of not using any ensemble methods and using the baseline segmentation and PoS tagging, the parser obtained good results on both macro-average LAS and UAS in the big treebanks category (55 languages), ranking 7th out of 33 teams. In the all treebanks category (LAS and UAS) we ranked 16th and 12th. The gap between the all and big categories is mainly due to the poor performance on four parallel PUD treebanks, suggesting that some ‘suffixed’ treebanks (e.g. Spanish-AnCora) perform poorly on cross-treebank settings, which does not occur with the corresponding ‘unsuffixed’ treebank (e.g. Spanish). By changing that, we obtain the 11th best LAS among all runs (official and unofficial). The code is made available at https://github.com/CoNLL-UD-2017/LyS-FASTPARSE
Lexicon-based methods using syntactic rules for polarity classification rely on parsers that are dependent on the language and on treebank guidelines. Thus, rules are also dependent and require adaptation, especially in multilingual scenarios. We tackle this challenge in the context of the Iberian Peninsula, releasing the first symbolic syntax-based Iberian system with rules shared across five official languages: Basque, Catalan, Galician, Portuguese and Spanish. The model is made available.
Restricted non-monotonicity has been shown beneficial for the projective arc-eager dependency parser in previous research, as posterior decisions can repair mistakes made in previous states due to the lack of information. In this paper, we propose a novel, fully non-monotonic transition system based on the non-projective Covington algorithm. As a non-monotonic system requires exploration of erroneous actions during the training process, we develop several non-monotonic variants of the recently defined dynamic oracle for the Covington parser, based on tight approximations of the loss. Experiments on datasets from the CoNLL-X and CoNLL-XI shared tasks show that a non-monotonic dynamic oracle outperforms the monotonic version in the majority of languages.
We present a simple encoding for unlabeled noncrossing graphs and show how its latent counterpart helps us to represent several families of directed and undirected graphs used in syntactic and semantic parsing of natural language as context-free languages. The families are separated purely on the basis of forbidden patterns in latent encoding, eliminating the need to differentiate the families of non-crossing graphs in inference algorithms: one algorithm works for all when the search space can be controlled in parser input.
Code-switching texts are those that contain terms in two or more different languages, and they appear increasingly often in social media. The aim of this paper is to provide a resource to the research community to evaluate the performance of sentiment classification techniques on this complex multilingual environment, proposing an English-Spanish corpus of tweets with code-switching (EN-ES-CS CORPUS). The tweets are labeled according to two well-known criteria used for this purpose: SentiStrength and a trinary scale (positive, neutral and negative categories). Preliminary work on the resource is already done, providing a set of baselines for the research community.