Cen Chen


pdf bib
SueNes: A Weakly Supervised Approach to Evaluating Single-Document Summarization via Negative Sampling
Forrest Bao | Ge Luo | Hebi Li | Minghui Qiu | Yinfei Yang | Youbiao He | Cen Chen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Canonical automatic summary evaluation metrics, such as ROUGE, focus on lexical similarity which cannot well capture semantics nor linguistic quality and require a reference summary which is costly to obtain. Recently, there have been a growing number of efforts to alleviate either or both of the two drawbacks. In this paper, we present a proof-of-concept study to a weakly supervised summary evaluation approach without the presence of reference summaries. Massive data in existing summarization datasets are transformed for training by pairing documents with corrupted reference summaries. In cross-domain tests, our strategy outperforms baselines with promising improvements, and show a great advantage in gauging linguistic qualities over all metrics.


pdf bib
Cross-Domain Review Helpfulness Prediction Based on Convolutional Neural Networks with Auxiliary Domain Discriminators
Cen Chen | Yinfei Yang | Jun Zhou | Xiaolong Li | Forrest Sheng Bao
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

With the growing amount of reviews in e-commerce websites, it is critical to assess the helpfulness of reviews and recommend them accordingly to consumers. Recent studies on review helpfulness require plenty of labeled samples for each domain/category of interests. However, such an approach based on close-world assumption is not always practical, especially for domains with limited reviews or the “out-of-vocabulary” problem. Therefore, we propose a convolutional neural network (CNN) based model which leverages both word-level and character-based representations. To transfer knowledge between domains, we further extend our model to jointly model different domains with auxiliary domain discriminators. On the Amazon product review dataset, our approach significantly outperforms the state of the art in terms of both accuracy and cross-domain robustness.


pdf bib
Aspect Extraction from Product Reviews Using Category Hierarchy Information
Yinfei Yang | Cen Chen | Minghui Qiu | Forrest Bao
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

Aspect extraction abstracts the common properties of objects from corpora discussing them, such as reviews of products. Recent work on aspect extraction is leveraging the hierarchical relationship between products and their categories. However, such effort focuses on the aspects of child categories but ignores those from parent categories. Hence, we propose an LDA-based generative topic model inducing the two-layer categorical information (CAT-LDA), to balance the aspects of both a parent category and its child categories. Our hypothesis is that child categories inherit aspects from parent categories, controlled by the hierarchy between them. Experimental results on 5 categories of Amazon.com products show that both common aspects of parent category and the individual aspects of sub-categories can be extracted to align well with the common sense. We further evaluate the manually extracted aspects of 16 products, resulting in an average hit rate of 79.10%.