Chadi Chakra


2024

pdf bib
DRU at WojoodNER 2024: A Multi-level Method Approach
Hadi Hamoud | Chadi Chakra | Nancy Hamdan | Osama Mraikhat | Doha Albared | Fadi Zaraket
Proceedings of The Second Arabic Natural Language Processing Conference

In this paper, we present our submission for the WojoodNER 2024 Shared Tasks addressing flat and nested sub-tasks (1, 2). We experiment with three different approaches. We train (i) an Arabic fine-tuned version of BLOOMZ-7b-mt, GEMMA-7b, and AraBERTv2 on multi-label token classifications task; (ii) two AraBERTv2 models, on main types and sub-types respectively; and (iii) one model for main types and four for the four sub-types. Based on the Wojood NER 2024 test set results, the three fine-tuned models performed similarly with AraBERTv2 favored (F1: Flat=.8780 Nested=.9040). The five model approach performed slightly better (F1: Flat=.8782 Nested=.9043).

pdf bib
DRU at WojoodNER 2024: ICL LLM for Arabic NER
Nancy Hamdan | Hadi Hamoud | Chadi Chakra | Osama Mraikhat | Doha Albared | Fadi Zaraket
Proceedings of The Second Arabic Natural Language Processing Conference

This paper details our submission to the WojoodNER Shared Task 2024, leveraging in-context learning with large language models for Arabic Named Entity Recognition. We utilized the Command R model, to perform fine-grained NER on the Wojood-Fine corpus. Our primary approach achieved an F1 score of 0.737 and a recall of 0.756. Post-processing the generated predictions to correct format inconsistencies resulted in an increased recall of 0.759, and a similar F1 score of 0.735. A multi-level prompting method and aggregation of outputs resulted in a lower F1 score of 0.637. Our results demonstrate the potential of ICL for Arabic NER while highlighting challenges related to LLM output consistency.