Chaitanya Shivade


2021

pdf bib
Overview of the MEDIQA 2021 Shared Task on Summarization in the Medical Domain
Asma Ben Abacha | Yassine Mrabet | Yuhao Zhang | Chaitanya Shivade | Curtis Langlotz | Dina Demner-Fushman
Proceedings of the 20th Workshop on Biomedical Language Processing

The MEDIQA 2021 shared tasks at the BioNLP 2021 workshop addressed three tasks on summarization for medical text: (i) a question summarization task aimed at exploring new approaches to understanding complex real-world consumer health queries, (ii) a multi-answer summarization task that targeted aggregation of multiple relevant answers to a biomedical question into one concise and relevant answer, and (iii) a radiology report summarization task addressing the development of clinically relevant impressions from radiology report findings. Thirty-five teams participated in these shared tasks with sixteen working notes submitted (fifteen accepted) describing a wide variety of models developed and tested on the shared and external datasets. In this paper, we describe the tasks, the datasets, the models and techniques developed by various teams, the results of the evaluation, and a study of correlations among various summarization evaluation measures. We hope that these shared tasks will bring new research and insights in biomedical text summarization and evaluation.

pdf bib
Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations
Chaitanya Shivade | Rashmi Gangadharaiah | Spandana Gella | Sandeep Konam | Shaoqing Yuan | Yi Zhang | Parminder Bhatia | Byron Wallace
Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations

2020

pdf bib
Towards Visual Dialog for Radiology
Olga Kovaleva | Chaitanya Shivade | Satyananda Kashyap | Karina Kanjaria | Joy Wu | Deddeh Ballah | Adam Coy | Alexandros Karargyris | Yufan Guo | David Beymer Beymer | Anna Rumshisky | Vandana Mukherjee Mukherjee
Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing

Current research in machine learning for radiology is focused mostly on images. There exists limited work in investigating intelligent interactive systems for radiology. To address this limitation, we introduce a realistic and information-rich task of Visual Dialog in radiology, specific to chest X-ray images. Using MIMIC-CXR, an openly available database of chest X-ray images, we construct both a synthetic and a real-world dataset and provide baseline scores achieved by state-of-the-art models. We show that incorporating medical history of the patient leads to better performance in answering questions as opposed to conventional visual question answering model which looks only at the image. While our experiments show promising results, they indicate that the task is extremely challenging with significant scope for improvement. We make both the datasets (synthetic and gold standard) and the associated code publicly available to the research community.

pdf bib
Proceedings of the First Workshop on Natural Language Processing for Medical Conversations
Parminder Bhatia | Steven Lin | Rashmi Gangadharaiah | Byron Wallace | Izhak Shafran | Chaitanya Shivade | Nan Du | Mona Diab
Proceedings of the First Workshop on Natural Language Processing for Medical Conversations

2019

pdf bib
Towards Automatic Generation of Shareable Synthetic Clinical Notes Using Neural Language Models
Oren Melamud | Chaitanya Shivade
Proceedings of the 2nd Clinical Natural Language Processing Workshop

Large-scale clinical data is invaluable to driving many computational scientific advances today. However, understandable concerns regarding patient privacy hinder the open dissemination of such data and give rise to suboptimal siloed research. De-identification methods attempt to address these concerns but were shown to be susceptible to adversarial attacks. In this work, we focus on the vast amounts of unstructured natural language data stored in clinical notes and propose to automatically generate synthetic clinical notes that are more amenable to sharing using generative models trained on real de-identified records. To evaluate the merit of such notes, we measure both their privacy preservation properties as well as utility in training clinical NLP models. Experiments using neural language models yield notes whose utility is close to that of the real ones in some clinical NLP tasks, yet leave ample room for future improvements.

pdf bib
Overview of the MEDIQA 2019 Shared Task on Textual Inference, Question Entailment and Question Answering
Asma Ben Abacha | Chaitanya Shivade | Dina Demner-Fushman
Proceedings of the 18th BioNLP Workshop and Shared Task

This paper presents the MEDIQA 2019 shared task organized at the ACL-BioNLP workshop. The shared task is motivated by a need to develop relevant methods, techniques and gold standards for inference and entailment in the medical domain, and their application to improve domain specific information retrieval and question answering systems. MEDIQA 2019 includes three tasks: Natural Language Inference (NLI), Recognizing Question Entailment (RQE), and Question Answering (QA) in the medical domain. 72 teams participated in the challenge, achieving an accuracy of 98% in the NLI task, 74.9% in the RQE task, and 78.3% in the QA task. In this paper, we describe the tasks, the datasets, and the participants’ approaches and results. We hope that this shared task will attract further research efforts in textual inference, question entailment, and question answering in the medical domain.

2018

pdf bib
Lessons from Natural Language Inference in the Clinical Domain
Alexey Romanov | Chaitanya Shivade
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

State of the art models using deep neural networks have become very good in learning an accurate mapping from inputs to outputs. However, they still lack generalization capabilities in conditions that differ from the ones encountered during training. This is even more challenging in specialized, and knowledge intensive domains, where training data is limited. To address this gap, we introduce MedNLI - a dataset annotated by doctors, performing a natural language inference task (NLI), grounded in the medical history of patients. We present strategies to: 1) leverage transfer learning using datasets from the open domain, (e.g. SNLI) and 2) incorporate domain knowledge from external data and lexical sources (e.g. medical terminologies). Our results demonstrate performance gains using both strategies.

2016

pdf bib
Identification, characterization, and grounding of gradable terms in clinical text
Chaitanya Shivade | Marie-Catherine de Marneffe | Eric Fosler-Lussier | Albert M. Lai
Proceedings of the 15th Workshop on Biomedical Natural Language Processing

pdf bib
Addressing Limited Data for Textual Entailment Across Domains
Chaitanya Shivade | Preethi Raghavan | Siddharth Patwardhan
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Extending NegEx with Kernel Methods for Negation Detection in Clinical Text
Chaitanya Shivade | Marie-Catherine de Marneffe | Eric Fosler-Lussier | Albert M. Lai
Proceedings of the Second Workshop on Extra-Propositional Aspects of Meaning in Computational Semantics (ExProM 2015)

pdf bib
Corpus-based discovery of semantic intensity scales
Chaitanya Shivade | Marie-Catherine de Marneffe | Eric Fosler-Lussier | Albert M. Lai
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2014

pdf bib
Precise Medication Extraction using Agile Text Mining
Chaitanya Shivade | James Cormack | David Milward
Proceedings of the 5th International Workshop on Health Text Mining and Information Analysis (Louhi)