Chandler May


2022

pdf bib
Adapting Coreference Resolution Models through Active Learning
Michelle Yuan | Patrick Xia | Chandler May | Benjamin Van Durme | Jordan Boyd-Graber
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Neural coreference resolution models trained on one dataset may not transfer to new, low-resource domains. Active learning mitigates this problem by sampling a small subset of data for annotators to label. While active learning is well-defined for classification tasks, its application to coreference resolution is neither well-defined nor fully understood. This paper explores how to actively label coreference, examining sources of model uncertainty and document reading costs. We compare uncertainty sampling strategies and their advantages through thorough error analysis. In both synthetic and human experiments, labeling spans within the same document is more effective than annotating spans across documents. The findings contribute to a more realistic development of coreference resolution models.

2021

pdf bib
LOME: Large Ontology Multilingual Extraction
Patrick Xia | Guanghui Qin | Siddharth Vashishtha | Yunmo Chen | Tongfei Chen | Chandler May | Craig Harman | Kyle Rawlins | Aaron Steven White | Benjamin Van Durme
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

We present LOME, a system for performing multilingual information extraction. Given a text document as input, our core system identifies spans of textual entity and event mentions with a FrameNet (Baker et al., 1998) parser. It subsequently performs coreference resolution, fine-grained entity typing, and temporal relation prediction between events. By doing so, the system constructs an event and entity focused knowledge graph. We can further apply third-party modules for other types of annotation, like relation extraction. Our (multilingual) first-party modules either outperform or are competitive with the (monolingual) state-of-the-art. We achieve this through the use of multilingual encoders like XLM-R (Conneau et al., 2020) and leveraging multilingual training data. LOME is available as a Docker container on Docker Hub. In addition, a lightweight version of the system is accessible as a web demo.

2019

pdf bib
On Measuring Social Biases in Sentence Encoders
Chandler May | Alex Wang | Shikha Bordia | Samuel R. Bowman | Rachel Rudinger
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

The Word Embedding Association Test shows that GloVe and word2vec word embeddings exhibit human-like implicit biases based on gender, race, and other social constructs (Caliskan et al., 2017). Meanwhile, research on learning reusable text representations has begun to explore sentence-level texts, with some sentence encoders seeing enthusiastic adoption. Accordingly, we extend the Word Embedding Association Test to measure bias in sentence encoders. We then test several sentence encoders, including state-of-the-art methods such as ELMo and BERT, for the social biases studied in prior work and two important biases that are difficult or impossible to test at the word level. We observe mixed results including suspicious patterns of sensitivity that suggest the test’s assumptions may not hold in general. We conclude by proposing directions for future work on measuring bias in sentence encoders.

2017

pdf bib
CADET: Computer Assisted Discovery Extraction and Translation
Benjamin Van Durme | Tom Lippincott | Kevin Duh | Deana Burchfield | Adam Poliak | Cash Costello | Tim Finin | Scott Miller | James Mayfield | Philipp Koehn | Craig Harman | Dawn Lawrie | Chandler May | Max Thomas | Annabelle Carrell | Julianne Chaloux | Tongfei Chen | Alex Comerford | Mark Dredze | Benjamin Glass | Shudong Hao | Patrick Martin | Pushpendre Rastogi | Rashmi Sankepally | Travis Wolfe | Ying-Ying Tran | Ted Zhang
Proceedings of the IJCNLP 2017, System Demonstrations

Computer Assisted Discovery Extraction and Translation (CADET) is a workbench for helping knowledge workers find, label, and translate documents of interest. It combines a multitude of analytics together with a flexible environment for customizing the workflow for different users. This open-source framework allows for easy development of new research prototypes using a micro-service architecture based atop Docker and Apache Thrift.

pdf bib
Social Bias in Elicited Natural Language Inferences
Rachel Rudinger | Chandler May | Benjamin Van Durme
Proceedings of the First ACL Workshop on Ethics in Natural Language Processing

We analyze the Stanford Natural Language Inference (SNLI) corpus in an investigation of bias and stereotyping in NLP data. The SNLI human-elicitation protocol makes it prone to amplifying bias and stereotypical associations, which we demonstrate statistically (using pointwise mutual information) and with qualitative examples.

2015

pdf bib
Topic Identification and Discovery on Text and Speech
Chandler May | Francis Ferraro | Alan McCree | Jonathan Wintrode | Daniel Garcia-Romero | Benjamin Van Durme
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf bib
Particle Filter Rejuvenation and Latent Dirichlet Allocation
Chandler May | Alex Clemmer | Benjamin Van Durme
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)