Chang Shu


pdf bib
POSQA: Probe the World Models of LLMs with Size Comparisons
Chang Shu | Jiuzhou Han | Fangyu Liu | Ehsan Shareghi | Nigel Collier
Findings of the Association for Computational Linguistics: EMNLP 2023

Embodied language comprehension emphasizes that language understanding is not solely a matter of mental processing in the brain but also involves interactions with the physical and social environment. With the explosive growth of Large Language Models (LLMs) and their already ubiquitous presence in our daily lives, it is becoming increasingly necessary to verify their real-world understanding. Inspired by cognitive theories, we propose POSQA: a Physical Object Size Question Answering dataset with simple size comparison questions to examine the extremity and analyze the potential mechanisms of the embodied comprehension of the latest LLMs. We show that even the largest LLMs today perform poorly under the zero-shot setting. We then push their limits with advanced prompting techniques and external knowledge augmentation. Furthermore, we investigate whether their real-world comprehension primarily derives from contextual information or internal weights and analyse the impact of prompt formats and report bias of different objects. Our results show that real-world understanding that LLMs shaped from textual data can be vulnerable to deception and confusion by the surface form of prompts, which makes it less aligned with human behaviours.

pdf bib
Do LLMs Understand Social Knowledge? Evaluating the Sociability of Large Language Models with SocKET Benchmark
Minje Choi | Jiaxin Pei | Sagar Kumar | Chang Shu | David Jurgens
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have been shown to perform well at a variety of syntactic, discourse, and reasoning tasks. While LLMs are increasingly deployed in many forms including conversational agents that interact with humans, we lack a grounded benchmark to measure how well LLMs understand social language. Here, we introduce a new theory-driven benchmark, SocKET, that contains 58 NLP tasks testing social knowledge which we group into five categories: humor & sarcasm, offensiveness, sentiment & emotion, and trustworthiness. In tests on the benchmark, we demonstrate that current models attain only moderate performance but reveal significant potential for task transfer among different types and categories of tasks, which were predicted from theory. Through zero-shot evaluations, we show that pretrained models already possess some innate but limited capabilities of social language understanding and training on one category of tasks can improve zero-shot testing on others. Our benchmark provides a systematic way to analyze model performance on an important dimension of language and points to clear room for improvement to build more socially-aware LLMs. The resources are released at

pdf bib
Improving Visual-Semantic Embedding with Adaptive Pooling and Optimization Objective
Zijian Zhang | Chang Shu | Ya Xiao | Yuan Shen | Di Zhu | Youxin Chen | Jing Xiao | Jey Han Lau | Qian Zhang | Zheng Lu
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Visual-Semantic Embedding (VSE) aims to learn an embedding space where related visual and semantic instances are close to each other. Recent VSE models tend to design complex structures to pool visual and semantic features into fixed-length vectors and use hard triplet loss for optimization. However, we find that: (1) combining simple pooling methods is no worse than these sophisticated methods; and (2) only considering the most difficult-to-distinguish negative sample leads to slow convergence and poor Recall@K improvement. To this end, we propose an adaptive pooling strategy that allows the model to learn how to aggregate features through a combination of simple pooling methods. We also introduce a strategy to dynamically select a group of negative samples to make the optimization converge faster and perform better. Experimental results on Flickr30K and MS-COCO demonstrate that a standard VSE using our pooling and optimization strategies outperforms current state-of-the-art systems (at least 1.0% on the metrics of recall) in image-to-text and text-to-image retrieval. Source code of our experiments is available at .


pdf bib
Logic-Consistency Text Generation from Semantic Parses
Chang Shu | Yusen Zhang | Xiangyu Dong | Peng Shi | Tao Yu | Rui Zhang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021


pdf bib
How Furiously Can Colorless Green Ideas Sleep? Sentence Acceptability in Context
Jey Han Lau | Carlos Armendariz | Shalom Lappin | Matthew Purver | Chang Shu
Transactions of the Association for Computational Linguistics, Volume 8

We study the influence of context on sentence acceptability. First we compare the acceptability ratings of sentences judged in isolation, with a relevant context, and with an irrelevant context. Our results show that context induces a cognitive load for humans, which compresses the distribution of ratings. Moreover, in relevant contexts we observe a discourse coherence effect that uniformly raises acceptability. Next, we test unidirectional and bidirectional language models in their ability to predict acceptability ratings. The bidirectional models show very promising results, with the best model achieving a new state-of-the-art for unsupervised acceptability prediction. The two sets of experiments provide insights into the cognitive aspects of sentence processing and central issues in the computational modeling of text and discourse.


pdf bib
Early Rumour Detection
Kaimin Zhou | Chang Shu | Binyang Li | Jey Han Lau
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Rumours can spread quickly through social media, and malicious ones can bring about significant economical and social impact. Motivated by this, our paper focuses on the task of rumour detection; particularly, we are interested in understanding how early we can detect them. Although there are numerous studies on rumour detection, few are concerned with the timing of the detection. A successfully-detected malicious rumour can still cause significant damage if it isn’t detected in a timely manner, and so timing is crucial. To address this, we present a novel methodology for early rumour detection. Our model treats social media posts (e.g. tweets) as a data stream and integrates reinforcement learning to learn the number minimum number of posts required before we classify an event as a rumour. Experiments on Twitter and Weibo demonstrate that our model identifies rumours earlier than state-of-the-art systems while maintaining a comparable accuracy.