Chang Zong
2024
Triad: A Framework Leveraging a Multi-Role LLM-based Agent to Solve Knowledge Base Question Answering
Chang Zong
|
Yuchen Yan
|
Weiming Lu
|
Jian Shao
|
Yongfeng Huang
|
Heng Chang
|
Yueting Zhuang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent progress with LLM-based agents has shown promising results across various tasks. However, their use in answering questions from knowledge bases remains largely unexplored. Implementing a KBQA system using traditional methods is challenging due to the shortage of task-specific training data and the complexity of creating task-focused model structures. In this paper, we present Triad, a unified framework that utilizes an LLM-based agent with multiple roles for KBQA tasks. The agent is assigned three roles to tackle different KBQA subtasks: agent as a generalist for mastering various subtasks, as a decision maker for the selection of candidates, and as an advisor for answering questions with knowledge. Our KBQA framework is executed in four phases, involving the collaboration of the agent’s multiple roles. We evaluated the performance of our framework using three benchmark datasets, and the results show that our framework outperforms state-of-the-art systems on the LC-QuAD and YAGO-QA benchmarks, yielding F1 scores of 11.8% and 20.7%, respectively.
Learning Global Controller in Latent Space for Parameter-Efficient Fine-Tuning
Zeqi Tan
|
Yongliang Shen
|
Xiaoxia Cheng
|
Chang Zong
|
Wenqi Zhang
|
Jian Shao
|
Weiming Lu
|
Yueting Zhuang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
While large language models (LLMs) have showcased remarkable prowess in various natural language processing tasks, their training costs are exorbitant. Consequently, a plethora of parameter-efficient fine-tuning methods have emerged to tailor large models for downstream tasks, including low-rank training. Recent approaches either amalgamate existing fine-tuning methods or dynamically adjust rank allocation. Nonetheless, these methods continue to grapple with issues like local optimization, inability to train with full rank and lack of focus on specific tasks. In this paper, we introduce an innovative parameter-efficient method for exploring optimal solutions within latent space. More specifically, we introduce a set of latent units designed to iteratively extract input representations from LLMs, continuously refining informative features that enhance downstream task performance. Due to the small and independent nature of the latent units in relation to input size, this significantly reduces training memory requirements. Additionally, we employ an asymmetric attention mechanism to facilitate bidirectional interaction between latent units and freezed LLM representations, thereby mitigating issues associated with non-full-rank training. Furthermore, we apply distillation over hidden states during the interaction, which guarantees a trimmed number of trainable parameters.Experimental results demonstrate that our approach achieves state-of-the-art performance on a range of natural language understanding, generation and reasoning tasks.
Search
Co-authors
- Weiming Lu 2
- Jian Shao 2
- Yueting Zhuang 2
- Yuchen Yan 1
- Yongfeng Huang 1
- show all...