Changjian Wang


2023

pdf bib
GRACE: Gradient-guided Controllable Retrieval for Augmenting Attribute-based Text Generation
Zhihua Wen | Zhiliang Tian | Zhen Huang | Yuxin Yang | Zexin Jian | Changjian Wang | Dongsheng Li
Findings of the Association for Computational Linguistics: ACL 2023

Attribute-based generation methods are of growing significance in controlling the generation of large pre-trained language models (PLMs). Existing studies control the generation by (1) finetuning the model with attributes or (2) guiding the inference processing toward control signals while freezing the PLM. However, finetuning approaches infuse domain bias into generation, making it hard to generate out-of-domain texts. Besides, many methods guide the inference in its word-by-word generation, pushing the word probability to the target attributes, resulting in less fluent sentences. We argue that distilling controlling information from natural texts can produce fluent sentences while maintaining high controllability. In this paper, we propose GRAdient-guided Controllable rEtrieval (GRACE), a retrieval-augmented generation framework to facilitate the generation of fluent sentences with high attribute relevance. GRACE memorizes the semantic and attribute information from unlabeled corpora and applies a controllable retrieval to obtain desired information. For the generation, we design techniques to eliminate the domain bias from the retrieval results and integrate it into the generation model. Additionally, we propose a gradient-guided generation scheme that iteratively steers generation toward higher attribute relevance. Experimental results and quantities of examples verify the effectiveness of our method.

pdf bib
Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot Text Classification Tasks
Haoqi Zheng | Qihuang Zhong | Liang Ding | Zhiliang Tian | Xin Niu | Changjian Wang | Dongsheng Li | Dacheng Tao
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Text classification tasks often encounter few-shot scenarios with limited labeled data, and addressing data scarcity is crucial. Data augmentation with mixup merges sample pairs to generate new pseudos, which can relieve the data deficiency issue in text classification. However, the quality of pseudo-samples generated by mixup exhibits significant variations. Most of the mixup methods fail to consider the varying degree of learning difficulty in different stages of training. And mixup generates new samples with one-hot labels, which encourages the model to produce a high prediction score for the correct class that is much larger than other classes, resulting in the model’s over-confidence. In this paper, we propose a self-evolution learning (SE) based mixup approach for data augmentation in text classification, which can generate more adaptive and model-friendly pseudo samples for the model training. SE caters to the growth of the model learning ability and adapts to the ability when generating training samples. To alleviate the model over-confidence, we introduce an instance-specific label smoothing regularization approach, which linearly interpolates the model’s output and one-hot labels of the original samples to generate new soft labels for label mixing up. Through experimental analysis, experiments show that our SE brings consistent and significant improvements upon different mixup methods. In-depth analyses demonstrate that SE enhances the model’s generalization ability.