Chantal Shaib


2024

pdf bib
Detection and Measurement of Syntactic Templates in Generated Text
Chantal Shaib | Yanai Elazar | Junyi Jessy Li | Byron C Wallace
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The diversity of text can be measured beyond word-level features, however existing diversity evaluation focuses primarily on word-level features. Here we propose a method for evaluating diversity over syntactic features to characterize general repetition in models, beyond frequent n-grams. Specifically, we define syntactic templates (e.g., strings comprising parts-of-speech) and show that models tend to produce templated text in downstream tasks at a higher rate than what is found in human-reference textsWe find that most (76%) templates in model-generated text can be found in pre-training data (compared to only 35% of human-authored text), and are not overwritten during fine-tuning or alignment processes such as RLHF. The connection between templates in generated text and the pre-training data allows us to analyze syntactic templates in models where we do not have the pre-training data.We also find that templates as features are able to differentiate between models, tasks, and domains, and are useful for qualitatively evaluating common model constructions.Finally, we demonstrate the use of templates as a useful tool for analyzing style memorization of training data in LLMs.

pdf bib
How Much Annotation is Needed to Compare Summarization Models?
Chantal Shaib | Joe Barrow | Alexa Siu | Byron Wallace | Ani Nenkova
Proceedings of the Third Workshop on Bridging Human--Computer Interaction and Natural Language Processing

Modern instruction-tuned models have become highly capable in text generation tasks such as summarization, and are expected to be released at a steady pace. In practice one may now wish to choose confidently, but with minimal effort, the best performing summarization model when applied to a new domain or purpose. In this work, we empirically investigate the test sample size necessary to select a preferred model in the context of news summarization. Empirical results reveal that comparative evaluation converges quickly for both automatic and human evaluation, with clear preferences for a system emerging from under 100 examples. The human preference data allows us to quantify how well automatic scores can reproduce preference rankings across a variety of downstream summarization tasks. We find that, while automatic metrics are stable at smaller sample sizes, only some automatic metrics are able to moderately predict model win rates according to human preference.

2023

pdf bib
Summarizing, Simplifying, and Synthesizing Medical Evidence using GPT-3 (with Varying Success)
Chantal Shaib | Millicent Li | Sebastian Joseph | Iain Marshall | Junyi Jessy Li | Byron Wallace
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Large language models, particularly GPT-3, are able to produce high quality summaries ofgeneral domain news articles in few- and zero-shot settings. However, it is unclear if such models are similarly capable in more specialized domains such as biomedicine. In this paper we enlist domain experts (individuals with medical training) to evaluate summaries of biomedical articles generated by GPT-3, given no supervision. We consider bothsingle- and multi-document settings. In the former, GPT-3 is tasked with generating regular and plain-language summaries of articles describing randomized controlled trials; in thelatter, we assess the degree to which GPT-3 is able to synthesize evidence reported acrossa collection of articles. We design an annotation scheme for evaluating model outputs, withan emphasis on assessing the factual accuracy of generated summaries. We find that whileGPT-3 is able to summarize and simplify single biomedical articles faithfully, it strugglesto provide accurate aggregations of findings over multiple documents. We release all data,code, and annotations used in this work.

2020

pdf bib
Explainable Clinical Decision Support from Text
Jinyue Feng | Chantal Shaib | Frank Rudzicz
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Clinical prediction models often use structured variables and provide outcomes that are not readily interpretable by clinicians. Further, free-text medical notes may contain information not immediately available in structured variables. We propose a hierarchical CNN-transformer model with explicit attention as an interpretable, multi-task clinical language model, which achieves an AUROC of 0.75 and 0.78 on sepsis and mortality prediction, respectively. We also explore the relationships between learned features from structured and unstructured variables using projection-weighted canonical correlation analysis. Finally, we outline a protocol to evaluate model usability in a clinical decision support context. From domain-expert evaluations, our model generates informative rationales that have promising real-life applications.