Chao Jiang


pdf bib
Frustratingly Easy Label Projection for Cross-lingual Transfer
Yang Chen | Chao Jiang | Alan Ritter | Wei Xu
Findings of the Association for Computational Linguistics: ACL 2023

Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 57 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect the end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.


pdf bib
Improving Large-scale Paraphrase Acquisition and Generation
Yao Dou | Chao Jiang | Wei Xu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

This paper addresses the quality issues in existing Twitter-based paraphrase datasets, and discusses the necessity of using two separate definitions of paraphrase for identification and generation tasks. We present a new Multi-Topic Paraphrase in Twitter (MultiPIT) corpus that consists of a total of 130k sentence pairs with crowdsoursing (MultiPIT_crowd) and expert (MultiPIT_expert) annotations using two different paraphrase definitions for paraphrase identification, in addition to a multi-reference test set (MultiPIT_NMR) and a large automatically constructed training set (MultiPIT_Auto) for paraphrase generation. With improved data annotation quality and task-specific paraphrase definition, the best pre-trained language model fine-tuned on our dataset achieves the state-of-the-art performance of 84.2 F1 for automatic paraphrase identification. Furthermore, our empirical results also demonstrate that the paraphrase generation models trained on MultiPIT_Auto generate more diverse and high-quality paraphrases compared to their counterparts fine-tuned on other corpora such as Quora, MSCOCO, and ParaNMT.

pdf bib
arXivEdits: Understanding the Human Revision Process in Scientific Writing
Chao Jiang | Wei Xu | Samuel Stevens
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Scientific publications are the primary means to communicate research discoveries, where the writing quality is of crucial importance. However, prior work studying the human editing process in this domain mainly focused on the abstract or introduction sections, resulting in an incomplete picture. In this work, we provide a complete computational framework for studying text revision in scientific writing. We first introduce arXivEdits, a new annotated corpus of 751 full papers from arXiv with gold sentence alignment across their multiple versions of revision, as well as fine-grained span-level edits and their underlying intentions for 1,000 sentence pairs. It supports our data-driven analysis to unveil the common strategies practiced by researchers for revising their papers. To scale up the analysis, we also develop automatic methods to extract revision at document-, sentence-, and word-levels. A neural CRF sentence alignment model trained on our corpus achieves 93.8 F1, enabling the reliable matching of sentences between different versions. We formulate the edit extraction task as a span alignment problem, and our proposed method extracts more fine-grained and explainable edits, compared to the commonly used diff algorithm. An intention classifier trained on our dataset achieves 78.9 F1 on the fine-grained intent classification task. Our data and system are released at


pdf bib
Neural semi-Markov CRF for Monolingual Word Alignment
Wuwei Lan | Chao Jiang | Wei Xu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Monolingual word alignment is important for studying fine-grained editing operations (i.e., deletion, addition, and substitution) in text-to-text generation tasks, such as paraphrase generation, text simplification, neutralizing biased language, etc. In this paper, we present a novel neural semi-Markov CRF alignment model, which unifies word and phrase alignments through variable-length spans. We also create a new benchmark with human annotations that cover four different text genres to evaluate monolingual word alignment models in more realistic settings. Experimental results show that our proposed model outperforms all previous approaches for monolingual word alignment as well as a competitive QA-based baseline, which was previously only applied to bilingual data. Our model demonstrates good generalizability to three out-of-domain datasets and shows great utility in two downstream applications: automatic text simplification and sentence pair classification tasks.


pdf bib
Neural CRF Model for Sentence Alignment in Text Simplification
Chao Jiang | Mounica Maddela | Wuwei Lan | Yang Zhong | Wei Xu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The success of a text simplification system heavily depends on the quality and quantity of complex-simple sentence pairs in the training corpus, which are extracted by aligning sentences between parallel articles. To evaluate and improve sentence alignment quality, we create two manually annotated sentence-aligned datasets from two commonly used text simplification corpora, Newsela and Wikipedia. We propose a novel neural CRF alignment model which not only leverages the sequential nature of sentences in parallel documents but also utilizes a neural sentence pair model to capture semantic similarity. Experiments demonstrate that our proposed approach outperforms all the previous work on monolingual sentence alignment task by more than 5 points in F1. We apply our CRF aligner to construct two new text simplification datasets, Newsela-Auto and Wiki-Auto, which are much larger and of better quality compared to the existing datasets. A Transformer-based seq2seq model trained on our datasets establishes a new state-of-the-art for text simplification in both automatic and human evaluation.


pdf bib
Learning Word Embeddings for Low-Resource Languages by PU Learning
Chao Jiang | Hsiang-Fu Yu | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Word embedding is a key component in many downstream applications in processing natural languages. Existing approaches often assume the existence of a large collection of text for learning effective word embedding. However, such a corpus may not be available for some low-resource languages. In this paper, we study how to effectively learn a word embedding model on a corpus with only a few million tokens. In such a situation, the co-occurrence matrix is sparse as the co-occurrences of many word pairs are unobserved. In contrast to existing approaches often only sample a few unobserved word pairs as negative samples, we argue that the zero entries in the co-occurrence matrix also provide valuable information. We then design a Positive-Unlabeled Learning (PU-Learning) approach to factorize the co-occurrence matrix and validate the proposed approaches in four different languages.