Chaochao Lu
2024
CELLO: Causal Evaluation of Large Vision-Language Models
Meiqi Chen
|
Bo Peng
|
Yan Zhang
|
Chaochao Lu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Causal reasoning is fundamental to human intelligence and crucial for effective decision-making in real-world environments. Despite recent advancements in large vision-language models (LVLMs), their ability to comprehend causality remains unclear. Previous work typically focuses on commonsense causality between events and/or actions, which is insufficient for applications like embodied agents and lacks the explicitly defined causal graphs required for formal causal reasoning. To overcome these limitations, we introduce a fine-grained and unified definition of causality involving interactions between humans and/or objects. Building on the definition, we construct a novel dataset, CELLO, consisting of 14,094 causal questions across all four levels of causality: discovery, association, intervention, and counterfactual. This dataset surpasses traditional commonsense causality by including explicit causal graphs that detail the interactions between humans and objects. Extensive experiments on CELLO reveal that current LVLMs still struggle with causal reasoning tasks, but they can benefit significantly from our proposed CELLO-CoT, a causally inspired chain-of-thought prompting strategy. Both quantitative and qualitative analyses from this study provide valuable insights for future research. Our project page is at https://github.com/OpenCausaLab/CELLO.
CLEAR: Can Language Models Really Understand Causal Graphs?
Sirui Chen
|
Mengying Xu
|
Kun Wang
|
Xingyu Zeng
|
Rui Zhao
|
Shengjie Zhao
|
Chaochao Lu
Findings of the Association for Computational Linguistics: EMNLP 2024
Causal reasoning is a cornerstone of how humans interpret the world. To model and reason about causality, causal graphs offer a concise yet effective solution. Given the impressive advancements in language models, a crucial question arises: can they really understand causal graphs? To this end, we pioneer an investigation into language models’ understanding of causal graphs. Specifically, we develop a framework to define causal graph understanding, by assessing language models’ behaviors through four practical criteria derived from diverse disciplines (e.g., philosophy and psychology). We then develop CLEAR, a novel benchmark that defines three complexity levels and encompasses 20 causal graph-based tasks across these levels. Finally, based on our framework and benchmark, we conduct extensive experiments on six leading language models and summarize five empirical findings. Our results indicate that while language models demonstrate a preliminary understanding of causal graphs, significant potential for improvement remains.
Quantifying and Mitigating Unimodal Biases in Multimodal Large Language Models: A Causal Perspective
Meiqi Chen
|
Yixin Cao
|
Yan Zhang
|
Chaochao Lu
Findings of the Association for Computational Linguistics: EMNLP 2024
Recent advancements in Large Language Models (LLMs) have facilitated the development of Multimodal LLMs (MLLMs). Despite their impressive capabilities, MLLMs often suffer from over-reliance on unimodal biases (e.g., language bias and vision bias), leading to incorrect answers in complex multimodal tasks. To investigate this issue, we propose a causal framework to interpret the biases in Visual Question Answering (VQA) problems. Within this framework, we conduct an in-depth causal analysis to assess the causal effect of these biases on MLLM predictions. Based on the analysis, we introduce 1) a novel MORE dataset with 12,000 challenging VQA instances requiring multi-hop reasoning and overcoming unimodal biases. 2) a causality-enhanced agent framework CAVE that guides models to comprehensively integrate information from different modalities and mitigate biases. Our experiments show that MLLMs perform poorly on MORE, indicating strong unimodal biases and limited semantic understanding. However, when integrated with our CAVE, promising improvements in reasoning and bias mitigation can be seen. These findings provide important insights for the development of more robust MLLMs and contribute to the broader goal of advancing multimodal AI systems capable of deeper understanding and reasoning. Our project page is at https://github.com/OpenCausaLab/MORE.
Search
Fix data
Co-authors
- Meiqi Chen 2
- Yan Zhang (张琰, 张廷) 2
- Yixin Cao 1
- Sirui Chen 1
- Bo Peng 1
- show all...