Chaojun Wang
2023
Progressive Translation: Improving Domain Robustness of Neural Machine Translation with Intermediate Sequences
Chaojun Wang
|
Yang Liu
|
Wai Lam
Findings of the Association for Computational Linguistics: ACL 2023
Previous studies show that intermediate supervision signals benefit various Natural Language Processing tasks. However, it is not clear whether there exist intermediate signals that benefit Neural Machine Translation (NMT). Borrowing techniques from Statistical Machine Translation, we propose intermediate signals which are intermediate sequences from the “source-like” structure to the “target-like” structure. Such intermediate sequences introduce an inductive bias that reflects a domain-agnostic principle of translation, which reduces spurious correlations that are harmful to out-of-domain generalisation. Furthermore, we introduce a full-permutation multi-task learning to alleviate the spurious causal relations from intermediate sequences to the target, which results from exposure bias. The Minimum Bayes Risk decoding algorithm is used to pick the best candidate translation from all permutations to further improve the performance. Experiments show that the introduced intermediate signals can effectively improve the domain robustness of NMT and reduces the amount of hallucinations on out-of-domain translation. Further analysis shows that our methods are especially promising in low-resource scenarios.
2021
Exploring the Importance of Source Text in Automatic Post-Editing for Context-Aware Machine Translation
Chaojun Wang
|
Christian Hardmeier
|
Rico Sennrich
Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)
Accurate translation requires document-level information, which is ignored by sentence-level machine translation. Recent work has demonstrated that document-level consistency can be improved with automatic post-editing (APE) using only target-language (TL) information. We study an extended APE model that additionally integrates source context. A human evaluation of fluency and adequacy in English–Russian translation reveals that the model with access to source context significantly outperforms monolingual APE in terms of adequacy, an effect largely ignored by automatic evaluation metrics. Our results show that TL-only modelling increases fluency without improving adequacy, demonstrating the need for conditioning on source text for automatic post-editing. They also highlight blind spots in automatic methods for targeted evaluation and demonstrate the need for human assessment to evaluate document-level translation quality reliably.
2020
On Exposure Bias, Hallucination and Domain Shift in Neural Machine Translation
Chaojun Wang
|
Rico Sennrich
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
The standard training algorithm in neural machine translation (NMT) suffers from exposure bias, and alternative algorithms have been proposed to mitigate this. However, the practical impact of exposure bias is under debate. In this paper, we link exposure bias to another well-known problem in NMT, namely the tendency to generate hallucinations under domain shift. In experiments on three datasets with multiple test domains, we show that exposure bias is partially to blame for hallucinations, and that training with Minimum Risk Training, which avoids exposure bias, can mitigate this. Our analysis explains why exposure bias is more problematic under domain shift, and also links exposure bias to the beam search problem, i.e. performance deterioration with increasing beam size. Our results provide a new justification for methods that reduce exposure bias: even if they do not increase performance on in-domain test sets, they can increase model robustness to domain shift.