Chaoxu Pang
2024
Uncovering Limitations of Large Language Models in Information Seeking from Tables
Chaoxu Pang
|
Yixuan Cao
|
Chunhao Yang
|
Ping Luo
Findings of the Association for Computational Linguistics: ACL 2024
Tables are recognized for their high information density and widespread usage, serving as essential sources of information. Seeking information from tables (TIS) is a crucial capability for Large Language Models (LLMs), serving as the foundation of knowledge-based Q&A systems. However, this field presently suffers from an absence of thorough and reliable evaluation. This paper introduces a more reliable benchmark for Table Information Seeking (TabIS). To avoid the unreliable evaluation caused by text similarity-based metrics, TabIS adopts a single-choice question format (with two options per question) instead of a text generation format. We establish an effective pipeline for generating options, ensuring their difficulty and quality. Experiments conducted on 12 LLMs reveal that while the performance of GPT-4-turbo is marginally satisfactory, both other proprietary and open-source models perform inadequately. Further analysis shows that LLMs exhibit a poor understanding of table structures, and struggle to balance between TIS performance and robustness against pseudo-relevant tables (common in retrieval-augmented systems). These findings uncover the limitations and potential challenges of LLMs in seeking information from tables. We release our data and code to facilitate further research in this field.
2023
Guideline Learning for In-Context Information Extraction
Chaoxu Pang
|
Yixuan Cao
|
Qiang Ding
|
Ping Luo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) can perform a new task by merely conditioning on task instructions and a few input-output examples, without optimizing any parameters. This is called In-Context Learning (ICL). In-context Information Extraction (IE) has recently garnered attention in the research community. However, the performance of In-context IE generally lags behind the state-of-the-art supervised expert models. We highlight a key reason for this shortfall: underspecified task description. The limited-length context struggles to thoroughly express the intricate IE task instructions and various edge cases, leading to misalignment in task comprehension with humans. In this paper, we propose a Guideline Learning (GL) framework for In-context IE which reflectively learns and follows guidelines. During the learning phrase, GL automatically synthesizes a set of guidelines based on a few error cases, and during inference, GL retrieves helpful guidelines for better ICL. Moreover, we propose a self-consistency-based active learning method to enhance the efficiency of GL. Experiments on event extraction and relation extraction show that GL can significantly improve the performance of in-context IE.