2024
pdf
bib
abs
BaitAttack: Alleviating Intention Shift in Jailbreak Attacks via Adaptive Bait Crafting
Rui Pu
|
Chaozhuo Li
|
Rui Ha
|
Litian Zhang
|
Lirong Qiu
|
Xi Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Jailbreak attacks enable malicious queries to evade detection by LLMs. Existing attacks focus on meticulously constructing prompts to disguise harmful intentions. However, the incorporation of sophisticated disguising prompts may incur the challenge of “intention shift”. Intention shift occurs when the additional semantics within the prompt distract the LLMs, causing the responses to deviate significantly from the original harmful intentions. In this paper, we propose a novel component, “bait”, to alleviate the effects of intention shift. Bait comprises an initial response to the harmful query, prompting LLMs to rectify or supplement the knowledge within the bait. By furnishing rich semantics relevant to the query, the bait helps LLMs focus on the original intention. To conceal the harmful content within the bait, we further propose a novel attack paradigm, BaitAttack. BaitAttack adaptively generates necessary components to persuade targeted LLMs that they are engaging with a legitimate inquiry in a safe context. Our proposal is evaluated on a popular dataset, demonstrating state-of-the-art attack performance and an exceptional capability for mitigating intention shift. The implementation of BaitAttack is accessible at: https://anonymous.4open.science/r/BaitAttack-D1F5.
pdf
bib
abs
Evidence Retrieval is almost All You Need for Fact Verification
Liwen Zheng
|
Chaozhuo Li
|
Xi Zhang
|
Yu-Ming Shang
|
Feiran Huang
|
Haoran Jia
Findings of the Association for Computational Linguistics: ACL 2024
Current fact verification methods generally follow the two-stage training paradigm: evidence retrieval and claim verification. While existing works focus on developing sophisticated claim verification modules, the fundamental importance of evidence retrieval is largely ignored. Existing approaches usually adopt the heuristic semantic similarity-based retrieval strategy, resulting in the task-irrelevant evidence and undesirable performance. In this paper, we concentrate on evidence retrieval and propose a Retrieval-Augmented Verification framework RAV, consisting of two major modules: the hybrid evidence retrieval and the joint fact verification. Hybrid evidence retrieval module incorporates an efficient retriever for preliminary pruning of candidate evidence, succeeded by a ranker that generates more precise sorting results. Under this end-to-end training paradigm, gradients from the claim verification can be back-propagated to enhance evidence selection. Experimental results on FEVER dataset demonstrate the superiority of RAV.
2023
pdf
bib
abs
To Copy Rather Than Memorize: A Vertical Learning Paradigm for Knowledge Graph Completion
Rui Li
|
Xu Chen
|
Chaozhuo Li
|
Yanming Shen
|
Jianan Zhao
|
Yujing Wang
|
Weihao Han
|
Hao Sun
|
Weiwei Deng
|
Qi Zhang
|
Xing Xie
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Embedding models have shown great power in knowledge graph completion (KGC) task. By learning structural constraints for each training triple, these methods implicitly memorize intrinsic relation rules to infer missing links. However, this paper points out that the multi-hop relation rules are hard to be reliably memorized due to the inherent deficiencies of such implicit memorization strategy, making embedding models underperform in predicting links between distant entity pairs. To alleviate this problem, we present Vertical Learning Paradigm (VLP), which extends embedding models by allowing to explicitly copy target information from related factual triples for more accurate prediction. Rather than solely relying on the implicit memory, VLP directly provides additional cues to improve the generalization ability of embedding models, especially making the distant link prediction significantly easier. Moreover, we also propose a novel relative distance based negative sampling technique (ReD) for more effective optimization. Experiments demonstrate the validity and generality of our proposals on two standard benchmarks. Our code is available at
https://github.com/rui9812/VLP.
pdf
bib
abs
Longtriever: a Pre-trained Long Text Encoder for Dense Document Retrieval
Junhan Yang
|
Zheng Liu
|
Chaozhuo Li
|
Guangzhong Sun
|
Xing Xie
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Pre-trained language models (PLMs) have achieved the preeminent position in dense retrieval due to their powerful capacity in modeling intrinsic semantics. However, most existing PLM-based retrieval models encounter substantial computational costs and are infeasible for processing long documents. In this paper, a novel retrieval model Longtriever is proposed to embrace three core challenges of long document retrieval: substantial computational cost, incomprehensive document understanding, and scarce annotations. Longtriever splits long documents into short blocks and then efficiently models the local semantics within a block and the global context semantics across blocks in a tightly-coupled manner. A pre-training phase is further proposed to empower Longtriever to achieve a better understanding of underlying semantic correlations. Experimental results on two popular benchmark datasets demonstrate the superiority of our proposal.
2022
pdf
bib
abs
RAPO: An Adaptive Ranking Paradigm for Bilingual Lexicon Induction
Zhoujin Tian
|
Chaozhuo Li
|
Shuo Ren
|
Zhiqiang Zuo
|
Zengxuan Wen
|
Xinyue Hu
|
Xiao Han
|
Haizhen Huang
|
Denvy Deng
|
Qi Zhang
|
Xing Xie
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Bilingual lexicon induction induces the word translations by aligning independently trained word embeddings in two languages. Existing approaches generally focus on minimizing the distances between words in the aligned pairs, while suffering from low discriminative capability to distinguish the relative orders between positive and negative candidates. In addition, the mapping function is globally shared by all words, whose performance might be hindered by the deviations in the distributions of different languages. In this work, we propose a novel ranking-oriented induction model RAPO to learn personalized mapping function for each word. RAPO is capable of enjoying the merits from the unique characteristics of a single word and the cross-language isomorphism simultaneously. Extensive experimental results on public datasets including both rich-resource and low-resource languages demonstrate the superiority of our proposal. Our code is publicly available in
https://github.com/Jlfj345wf/RAPO.
2021
pdf
bib
abs
Leveraging Bidding Graphs for Advertiser-Aware Relevance Modeling in Sponsored Search
Shuxian Bi
|
Chaozhuo Li
|
Xiao Han
|
Zheng Liu
|
Xing Xie
|
Haizhen Huang
|
Zengxuan Wen
Findings of the Association for Computational Linguistics: EMNLP 2021
Recently, sponsored search has become one of the most lucrative channels for marketing. As the fundamental basis of sponsored search, relevance modeling has attracted increasing attention due to the tremendous practical value. Most existing methods solely rely on the query-keyword pairs. However, keywords are usually short texts with scarce semantic information, which may not precisely reflect the underlying advertising intents. In this paper, we investigate the novel problem of advertiser-aware relevance modeling, which leverages the advertisers’ information to bridge the gap between the search intents and advertising purposes. Our motivation lies in incorporating the unsupervised bidding behaviors as the complementary graphs to learn desirable advertiser representations. We further propose a Bidding-Graph augmented Triple-based Relevance model BGTR with three towers to deeply fuse the bidding graphs and semantic textual data. Empirically, we evaluate the BGTR model over a large industry dataset, and the experimental results consistently demonstrate its superiority.
2019
pdf
bib
abs
Learning with Noisy Labels for Sentence-level Sentiment Classification
Hao Wang
|
Bing Liu
|
Chaozhuo Li
|
Yan Yang
|
Tianrui Li
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Deep neural networks (DNNs) can fit (or even over-fit) the training data very well. If a DNN model is trained using data with noisy labels and tested on data with clean labels, the model may perform poorly. This paper studies the problem of learning with noisy labels for sentence-level sentiment classification. We propose a novel DNN model called NetAb (as shorthand for convolutional neural Networks with Ab-networks) to handle noisy labels during training. NetAb consists of two convolutional neural networks, one with a noise transition layer for dealing with the input noisy labels and the other for predicting ‘clean’ labels. We train the two networks using their respective loss functions in a mutual reinforcement manner. Experimental results demonstrate the effectiveness of the proposed model.
2016
pdf
bib
abs
Detecting Context Dependent Messages in a Conversational Environment
Chaozhuo Li
|
Yu Wu
|
Wei Wu
|
Chen Xing
|
Zhoujun Li
|
Ming Zhou
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
While automatic response generation for building chatbot systems has drawn a lot of attention recently, there is limited understanding on when we need to consider the linguistic context of an input text in the generation process. The task is challenging, as messages in a conversational environment are short and informal, and evidence that can indicate a message is context dependent is scarce. After a study of social conversation data crawled from the web, we observed that some characteristics estimated from the responses of messages are discriminative for identifying context dependent messages. With the characteristics as weak supervision, we propose using a Long Short Term Memory (LSTM) network to learn a classifier. Our method carries out text representation and classifier learning in a unified framework. Experimental results show that the proposed method can significantly outperform baseline methods on accuracy of classification.