Image captioning models are typically trained by treating all samples equally, neglecting to account for mismatched or otherwise difficult data points. In contrast, recent work has shown the effectiveness of training models by scheduling the data using curriculum learning strategies. This paper contributes to this direction by actively curating difficult samples in datasets without increasing the total number of samples. We explore the effect of using three data curation methods within the training process: complete removal of an sample, caption replacement, or image replacement via a text-to-image generation model. Experiments on the Flickr30K and COCO datasets with the BLIP and BEiT-3 models demonstrate that these curation methods do indeed yield improved image captioning models, underscoring their efficacy.
Most vision-and-language pretraining research focuses on English tasks. However, the creation of multilingual multimodal evaluation datasets (e.g. Multi30K, xGQA, XVNLI, and MaRVL) poses a new challenge in finding high-quality training data that is both multilingual and multimodal. In this paper, we investigate whether machine translating English multimodal data can be an effective proxy for the lack of readily available multilingual data. We call this framework TD-MML: Translated Data for Multilingual Multimodal Learning, and it can be applied to any multimodal dataset and model. We apply it to both pretraining and fine-tuning data with a state-of-the-art model. In order to prevent models from learning from low-quality translated text, we propose two metrics for automatically removing such translations from the resulting datasets. In experiments on five tasks across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning, both at pretraining and fine-tuning.
Creole languages such as Nigerian Pidgin English and Haitian Creole are under-resourced and largely ignored in the NLP literature. Creoles typically result from the fusion of a foreign language with multiple local languages, and what grammatical and lexical features are transferred to the creole is a complex process. While creoles are generally stable, the prominence of some features may be much stronger with certain demographics or in some linguistic situations. This paper makes several contributions: We collect existing corpora and release models for Haitian Creole, Nigerian Pidgin English, and Singaporean Colloquial English. We evaluate these models on intrinsic and extrinsic tasks. Motivated by the above literature, we compare standard language models with distributionally robust ones and find that, somewhat surprisingly, the standard language models are superior to the distributionally robust ones. We investigate whether this is an effect of over-parameterization or relative distributional stability, and find that the difference persists in the absence of over-parameterization, and that drift is limited, confirming the relative stability of creole languages.
Negation is one of the most fundamental concepts in human cognition and language, and several natural language inference (NLI) probes have been designed to investigate pretrained language models’ ability to detect and reason with negation. However, the existing probing datasets are limited to English only, and do not enable controlled probing of performance in the absence or presence of negation. In response, we present a multilingual (English, Bulgarian, German, French and Chinese) benchmark collection of NLI examples that are grammatical and correctly labeled, as a result of manual inspection and reformulation. We use the benchmark to probe the negation-awareness of multilingual language models and find that models that correctly predict examples with negation cues, often fail to correctly predict their counter-examples without negation cues, even when the cues are irrelevant for semantic inference.
Unresolved coreference is a bottleneck for relation extraction, and high-quality coreference resolvers may produce an output that makes it a lot easier to extract knowledge triples. We show how to improve coreference resolvers by forwarding their input to a relation extraction system and reward the resolvers for producing triples that are found in knowledge bases. Since relation extraction systems can rely on different forms of supervision and be biased in different ways, we obtain the best performance, improving over the state of the art, using multi-task reinforcement learning.