Cheng-Fu Yang
2024
Re-ReST: Reflection-Reinforced Self-Training for Language Agents
Zi-Yi Dou
|
Cheng-Fu Yang
|
Xueqing Wu
|
Kai-Wei Chang
|
Nanyun Peng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Finetuning language agents with reasoning-action trajectories is effective, but obtaining these trajectories from human annotations or stronger models is costly and sometimes impractical. In this paper, we investigate the use of self-training in language agents, which can generate supervision from the agent itself, offering a promising alternative without relying on human or stronger model demonstrations. Self-training, however, requires high-quality model-generated samples, which are hard to obtain for challenging language agent tasks. To address this, we present Reflection-Reinforced Self-Training (Re-ReST), which uses a reflector to refine low-quality generated samples during self-training. The reflector takes the agent’s output and feedback from an external environment (e.g., unit test results in code generation) to produce improved samples. This technique enhances the quality of inferior samples and efficiently enriches the self-training dataset with higher-quality samples. We conduct extensive experiments on open-source language agents across tasks, including multi-hop question answering, sequential decision-making, code generation, visual question answering, and text-to-image generation. The results demonstrate the effectiveness of self-training and Re-ReST in language agent tasks, with self-training improving baselines by 7.6% on HotpotQA and 28.4% on AlfWorld, and Re-ReST further boosting performance by 2.0% and 14.1%, respectively. Our studies also confirm the efficiency of using a reflector to generate high-quality samples for self-training. Moreover, we demonstrate a method to employ reflection during inference without ground-truth feedback, addressing the limitation of previous reflection work.
LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning
Silin Meng
|
Yiwei Wang
|
Cheng-Fu Yang
|
Nanyun Peng
|
Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2024
Path planning is a fundamental scientific problem in robotics and autonomous navigation, requiring the derivation of efficient routes from starting to destination points while avoiding obstacles. Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows. Conversely, large language models (LLMs) excel in broader environmental analysis through contextual understanding, providing global insights into environments. However, they fall short in detailed spatial and temporal reasoning, often leading to invalid or inefficient routes. In this work, we propose LLM-A*, an new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs. This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios. By integrating the strengths of both methodologies, LLM-A* addresses the computational and memory limitations of conventional algorithms without compromising on the validity required for effective pathfinding.
2023
LACMA: Language-Aligning Contrastive Learning with Meta-Actions for Embodied Instruction Following
Cheng-Fu Yang
|
Yen-Chun Chen
|
Jianwei Yang
|
Xiyang Dai
|
Lu Yuan
|
Yu-Chiang Wang
|
Kai-Wei Chang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
End-to-end Transformers have demonstrated an impressive success rate for Embodied Instruction Following when the environment has been seen in training. However, they tend to struggle when deployed in an unseen environment. This lack of generalizability is due to the agent’s insensitivity to subtle changes in natural language instructions. To mitigate this issue, we propose explicitly aligning the agent’s hidden states with the instructions via contrastive learning. Nevertheless, the semantic gap between high-level language instructions and the agent’s low-level action space remains an obstacle. Therefore, we further introduce a novel concept of meta-actions to bridge the gap. Meta-actions are ubiquitous action patterns that can be parsed from the original action sequence. These patterns represent higher-level semantics that are intuitively aligned closer to the instructions. When meta-actions are applied as additional training signals, the agent generalizes better to unseen environments. Compared to a strong multi-modal Transformer baseline, we achieve a significant 4.5% absolute gain in success rate in unseen environments of ALFRED Embodied Instruction Following. Additional analysis shows that the contrastive objective and meta-actions are complementary in achieving the best results, and the resulting agent better aligns its states with corresponding instructions, making it more suitable for real-world embodied agents.
Search
Fix data
Co-authors
- Kai-Wei Chang 3
- Nanyun Peng 2
- Yen-Chun Chen 1
- Xiyang Dai 1
- Zi-Yi Dou 1
- show all...