Cheng Ji


2024

pdf bib
Few-Shot Multimodal Named Entity Recognition Based on Mutlimodal Causal Intervention Graph
Feihong Lu | Xiaocui Yang | Qian Li | Qingyun Sun | Ke Jiang | Cheng Ji | Jianxin Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multimodal Named Entity Recognition (MNER) models typically require a significant volume of labeled data for effective training to extract relations between entities. In real-world scenarios, we frequently encounter unseen relation types. Nevertheless, existing methods are predominantly tailored for complete datasets and are not equipped to handle these new relation types. In this paper, we introduce the Few-shot Multimodal Named Entity Recognition (FMNER) task to address these novel relation types. FMNER trains in the source domain (seen types) and tests in the target domain (unseen types) with different distributions. Due to limited available resources for sampling, each sampling instance yields different content, resulting in data bias and alignment problems of multimodal units (image patches and words). To alleviate the above challenge, we propose a novel Multimodal causal Intervention graphs (MOUSING) model for FMNER. Specifically, we begin by constructing a multimodal graph that incorporates fine-grained information from multiple modalities. Subsequently, we introduce the Multimodal Causal Intervention Strategy to update the multimodal graph. It aims to decrease spurious correlations and emphasize accurate correlations between multimodal units, resulting in effectively aligned multimodal representations. Extensive experiments on two multimodal named entity recognition datasets demonstrate the superior performance of our model in the few-shot setting.

2023

pdf bib
Dual-Gated Fusion with Prefix-Tuning for Multi-Modal Relation Extraction
Qian Li | Shu Guo | Cheng Ji | Xutan Peng | Shiyao Cui | Jianxin Li | Lihong Wang
Findings of the Association for Computational Linguistics: ACL 2023

Multi-Modal Relation Extraction (MMRE) aims at identifying the relation between two entities in texts that contain visual clues. Rich visual content is valuable for the MMRE task, but existing works cannot well model finer associations among different modalities, failing to capture the truly helpful visual information and thus limiting relation extraction performance. In this paper, we propose a novel MMRE framework to better capture the deeper correlations of text, entity pair, and image/objects, so as to mine more helpful information for the task, termed as DGF-PT. We first propose a prompt-based autoregressive encoder, which builds the associations of intra-modal and inter-modal features related to the task, respectively by entity-oriented and object-oriented prefixes. To better integrate helpful visual information, we design a dual-gated fusion module to distinguish the importance of image/objects and further enrich text representations. In addition, a generative decoder is introduced with entity type restriction on relations, better filtering out candidates. Extensive experiments conducted on the benchmark dataset show that our approach achieves excellent performance compared to strong competitors, even in the few-shot situation.

pdf bib
Multi-Modal Knowledge Graph Transformer Framework for Multi-Modal Entity Alignment
Qian Li | Cheng Ji | Shu Guo | Zhaoji Liang | Lihong Wang | Jianxin Li
Findings of the Association for Computational Linguistics: EMNLP 2023

Multi-Modal Entity Alignment (MMEA) is a critical task that aims to identify equivalent entity pairs across multi-modal knowledge graphs (MMKGs). However, this task faces challenges due to the presence of different types of information, including neighboring entities, multi-modal attributes, and entity types. Directly incorporating the above information (e.g., concatenation or attention) can lead to an unaligned information space. To address these challenges, we propose a novel MMEA transformer, called Meaformer, that hierarchically introduces neighbor features, multi-modal attributes, and entity types to enhance the alignment task. Taking advantage of the transformer’s ability to better integrate multiple information, we design a hierarchical modifiable self-attention block in a transformer encoder to preserve the unique semantics of different information. Furthermore, we design two entity-type prefix injection methods to redintegrate entity-type information using type prefixes, which help to restrict the global information of entities not present in the MMKGs.