Chengqi Zhang


pdf bib
Perceiving the World: Question-guided Reinforcement Learning for Text-based Games
Yunqiu Xu | Meng Fang | Ling Chen | Yali Du | Joey Zhou | Chengqi Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text-based games provide an interactive way to study natural language processing. While deep reinforcement learning has shown effectiveness in developing the game playing agent, the low sample efficiency and the large action space remain to be the two major challenges that hinder the DRL from being applied in the real world. In this paper, we address the challenges by introducing world-perceiving modules, which automatically decompose tasks and prune actions by answering questions about the environment. We then propose a two-phase training framework to decouple language learning from reinforcement learning, which further improves the sample efficiency. The experimental results show that the proposed method significantly improves the performance and sample efficiency. Besides, it shows robustness against compound error and limited pre-training data.


pdf bib
Generalization in Text-based Games via Hierarchical Reinforcement Learning
Yunqiu Xu | Meng Fang | Ling Chen | Yali Du | Chengqi Zhang
Findings of the Association for Computational Linguistics: EMNLP 2021

Deep reinforcement learning provides a promising approach for text-based games in studying natural language communication between humans and artificial agents. However, the generalization still remains a big challenge as the agents depend critically on the complexity and variety of training tasks. In this paper, we address this problem by introducing a hierarchical framework built upon the knowledge graph-based RL agent. In the high level, a meta-policy is executed to decompose the whole game into a set of subtasks specified by textual goals, and select one of them based on the KG. Then a sub-policy in the low level is executed to conduct goal-conditioned reinforcement learning. We carry out experiments on games with various difficulty levels and show that the proposed method enjoys favorable generalizability.


pdf bib
RatE: Relation-Adaptive Translating Embedding for Knowledge Graph Completion
Hao Huang | Guodong Long | Tao Shen | Jing Jiang | Chengqi Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Many graph embedding approaches have been proposed for knowledge graph completion via link prediction. Among those, translating embedding approaches enjoy the advantages of light-weight structure, high efficiency and great interpretability. Especially when extended to complex vector space, they show the capability in handling various relation patterns including symmetry, antisymmetry, inversion and composition. However, previous translating embedding approaches defined in complex vector space suffer from two main issues: 1) representing and modeling capacities of the model are limited by the translation function with rigorous multiplication of two complex numbers; and 2) embedding ambiguity caused by one-to-many relations is not explicitly alleviated. In this paper, we propose a relation-adaptive translation function built upon a novel weighted product in complex space, where the weights are learnable, relation-specific and independent to embedding size. The translation function only requires eight more scalar parameters each relation, but improves expressive power and alleviates embedding ambiguity problem. Based on the function, we then present our Relation-adaptive translating Embedding (RatE) approach to score each graph triple. Moreover, a novel negative sampling method is proposed to utilize both prior knowledge and self-adversarial learning for effective optimization. Experiments verify RatE achieves state-of-the-art performance on four link prediction benchmarks.

pdf bib
Improving Long-Tail Relation Extraction with Collaborating Relation-Augmented Attention
Yang Li | Tao Shen | Guodong Long | Jing Jiang | Tianyi Zhou | Chengqi Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Wrong labeling problem and long-tail relations are two main challenges caused by distant supervision in relation extraction. Recent works alleviate the wrong labeling by selective attention via multi-instance learning, but cannot well handle long-tail relations even if hierarchies of the relations are introduced to share knowledge. In this work, we propose a novel neural network, Collaborating Relation-augmented Attention (CoRA), to handle both the wrong labeling and long-tail relations. Particularly, we first propose relation-augmented attention network as base model. It operates on sentence bag with a sentence-to-relation attention to minimize the effect of wrong labeling. Then, facilitated by the proposed base model, we introduce collaborating relation features shared among relations in the hierarchies to promote the relation-augmenting process and balance the training data for long-tail relations. Besides the main training objective to predict the relation of a sentence bag, an auxiliary objective is utilized to guide the relation-augmenting process for a more accurate bag-level representation. In the experiments on the popular benchmark dataset NYT, the proposed CoRA improves the prior state-of-the-art performance by a large margin in terms of Precision@N, AUC and Hits@K. Further analyses verify its superior capability in handling long-tail relations in contrast to the competitors.


pdf bib
Tensorized Self-Attention: Efficiently Modeling Pairwise and Global Dependencies Together
Tao Shen | Tianyi Zhou | Guodong Long | Jing Jiang | Chengqi Zhang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Neural networks equipped with self-attention have parallelizable computation, light-weight structure, and the ability to capture both long-range and local dependencies. Further, their expressive power and performance can be boosted by using a vector to measure pairwise dependency, but this requires to expand the alignment matrix to a tensor, which results in memory and computation bottlenecks. In this paper, we propose a novel attention mechanism called “Multi-mask Tensorized Self-Attention” (MTSA), which is as fast and as memory-efficient as a CNN, but significantly outperforms previous CNN-/RNN-/attention-based models. MTSA 1) captures both pairwise (token2token) and global (source2token) dependencies by a novel compatibility function composed of dot-product and additive attentions, 2) uses a tensor to represent the feature-wise alignment scores for better expressive power but only requires parallelizable matrix multiplications, and 3) combines multi-head with multi-dimensional attentions, and applies a distinct positional mask to each head (subspace), so the memory and computation can be distributed to multiple heads, each with sequential information encoded independently. The experiments show that a CNN/RNN-free model based on MTSA achieves state-of-the-art or competitive performance on nine NLP benchmarks with compelling memory- and time-efficiency.