Chengxiang Zhuo
2024
Decomposition for Enhancing Attention: Improving LLM-based Text-to-SQL through Workflow Paradigm
Yuanzhen Xie
|
Xinzhou Jin
|
Tao Xie
|
Matrixmxlin Matrixmxlin
|
Liang Chen
|
Chenyun Yu
|
Cheng Lei
|
Chengxiang Zhuo
|
Bo Hu
|
Zang Li
Findings of the Association for Computational Linguistics: ACL 2024
In-context learning of large-language models (LLMs) has achieved remarkable success in the field of natural language processing, while extensive case studies reveal that the single-step chain-of-thought prompting approach faces challenges such as attention diffusion and inadequate performance in complex tasks like text-to-SQL. To improve the contextual learning capabilities of LLMs in text-to-SQL, a workflow paradigm method is proposed, aiming to enhance the attention and problem-solving scope of LLMs through decomposition. Specifically, the information determination module for eliminating redundant information and the brand-new prompt structure based on problem classification greatly enhance the model’s attention. Additionally, the inclusion of self-correction and active learning modules greatly expands the problem-solving scope of LLMs, hence improving the upper limit of LLM-based approaches. Extensive experiments conducted on three datasets demonstrate that our approach outperforms other methods by a significant margin. About 2-3 percentage point improvements compared to the existing baseline on the Spider Dev, Spider-Realistic, and Bird Dev datasets and new SOTA results on the Spider Test dataset are achieved. Our code is available on GitHub: https://github.com/FlyingFeather/DEA-SQL.
Search
Co-authors
- Yuanzhen Xie 1
- Xinzhou Jin 1
- Tao Xie 1
- Matrixmxlin Matrixmxlin 1
- Liang Chen 1
- show all...