Chenlei Guo


pdf bib
Joint Goal Segmentation and Goal Success Prediction on Multi-Domain Conversations
Meiguo Wang | Benjamin Yao | Bin Guo | Xiaohu Liu | Yu Zhang | Tuan-Hung Pham | Chenlei Guo
Proceedings of the 29th International Conference on Computational Linguistics

To evaluate the performance of a multi-domain goal-oriented Dialogue System (DS), it is important to understand what the users’ goals are for the conversations and whether those goals are successfully achieved. The success rate of goals directly correlates with user satisfaction and perceived usefulness of the DS. In this paper, we propose a novel automatic dialogue evaluation framework that jointly performs two tasks: goal segmentation and goal success prediction. We extend the RoBERTa-IQ model (Gupta et al., 2021) by adding multi-task learning heads for goal segmentation and success prediction. Using an annotated dataset from a commercial DS, we demonstrate that our proposed model reaches an accuracy that is on-par with single-pass human annotation comparing to a three-pass gold annotation benchmark.

pdf bib
Overcoming Catastrophic Forgetting During Domain Adaptation of Seq2seq Language Generation
Dingcheng Li | Zheng Chen | Eunah Cho | Jie Hao | Xiaohu Liu | Fan Xing | Chenlei Guo | Yang Liu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Seq2seq language generation models that are trained offline with multiple domains in a sequential fashion often suffer from catastrophic forgetting. Lifelong learning has been proposed to handle this problem. However, existing work such as experience replay or elastic weighted consolidation requires incremental memory space. In this work, we propose an innovative framework, RMR_DSEthat leverages a recall optimization mechanism to selectively memorize important parameters of previous tasks via regularization, and uses a domain drift estimation algorithm to compensate the drift between different do-mains in the embedding space. These designs enable the model to be trained on the current task while keep-ing the memory of previous tasks, and avoid much additional data storage. Furthermore, RMR_DSE can be combined with existing lifelong learning approaches. Our experiments on two seq2seq language generation tasks, paraphrase and dialog response generation, show thatRMR_DSE outperforms SOTA models by a considerable margin and reduces forgetting greatly.

pdf bib
Self-Aware Feedback-Based Self-Learning in Large-Scale Conversational AI
Pragaash Ponnusamy | Clint Solomon Mathialagan | Gustavo Aguilar | Chengyuan Ma | Chenlei Guo
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track

Self-learning paradigms in large-scale conversational AI agents tend to leverage user feedback in bridging between what they say and what they mean. However, such learning, particularly in Markov-based query rewriting systems have far from addressed the impact of these models on future training where successive feedback is inevitably contingent on the rewrite itself, especially in a continually updating environment. In this paper, we explore the consequences of this inherent lack of self-awareness towards impairing the model performance, ultimately resulting in both Type I and II errors over time. To that end, we propose augmenting the Markov Graph construction with a superposition-based adjacency matrix. Here, our method leverages an induced stochasticity to reactively learn a locally-adaptive decision boundary based on the performance of the individual rewrites in a bi-variate beta setting. We also surface a data augmentation strategy that leverages template-based generation in abridging complex conversation hierarchies of dialogs so as to simplify the learning process. All in all, we demonstrate that our self-aware model improves the overall PR-AUC by 27.45%, achieves a relative defect reduction of up to 31.22%, and is able to adapt quicker to changes in global preferences across a large number of customers.

pdf bib
A Vocabulary-Free Multilingual Neural Tokenizer for End-to-End Task Learning
Md Mofijul Islam | Gustavo Aguilar | Pragaash Ponnusamy | Clint Solomon Mathialagan | Chengyuan Ma | Chenlei Guo
Proceedings of the 7th Workshop on Representation Learning for NLP

Subword tokenization is a commonly used input pre-processing step in most recent NLP models. However, it limits the models’ ability to leverage end-to-end task learning. Its frequency-based vocabulary creation compromises tokenization in low-resource languages, leading models to produce suboptimal representations. Additionally, the dependency on a fixed vocabulary limits the subword models’ adaptability across languages and domains. In this work, we propose a vocabulary-free neural tokenizer by distilling segmentation information from heuristic-based subword tokenization. We pre-train our character-based tokenizer by processing unique words from multilingual corpus, thereby extensively increasing word diversity across languages. Unlike the predefined and fixed vocabularies in subword methods, our tokenizer allows end-to-end task learning, resulting in optimal task-specific tokenization. The experimental results show that replacing the subword tokenizer with our neural tokenizer consistently improves performance on multilingual (NLI) and code-switching (sentiment analysis) tasks, with larger gains in low-resource languages. Additionally, our neural tokenizer exhibits a robust performance on downstream tasks when adversarial noise is present (typos and misspelling), further increasing the initial improvements over statistical subword tokenizers.


pdf bib
Contextual Rephrase Detection for Reducing Friction in Dialogue Systems
Zhuoyi Wang | Saurabh Gupta | Jie Hao | Xing Fan | Dingcheng Li | Alexander Hanbo Li | Chenlei Guo
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

For voice assistants like Alexa, Google Assistant, and Siri, correctly interpreting users’ intentions is of utmost importance. However, users sometimes experience friction with these assistants, caused by errors from different system components or user errors such as slips of the tongue. Users tend to rephrase their queries until they get a satisfactory response. Rephrase detection is used to identify the rephrases and has long been treated as a task with pairwise input, which does not fully utilize the contextual information (e.g. users’ implicit feedback). To this end, we propose a contextual rephrase detection model ContReph to automatically identify rephrases from multi-turn dialogues. We showcase how to leverage the dialogue context and user-agent interaction signals, including the user’s implicit feedback and the time gap between different turns, which can help significantly outperform the pairwise rephrase detection models.

pdf bib
Learning to Selectively Learn for Weakly-supervised Paraphrase Generation
Kaize Ding | Dingcheng Li | Alexander Hanbo Li | Xing Fan | Chenlei Guo | Yang Liu | Huan Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Paraphrase generation is a longstanding NLP task that has diverse applications on downstream NLP tasks. However, the effectiveness of existing efforts predominantly relies on large amounts of golden labeled data. Though unsupervised endeavors have been proposed to alleviate this issue, they may fail to generate meaningful paraphrases due to the lack of supervision signals. In this work, we go beyond the existing paradigms and propose a novel approach to generate high-quality paraphrases with data of weak supervision. Specifically, we tackle the weakly-supervised paraphrase generation problem by: (1) obtaining abundant weakly-labeled parallel sentences via retrieval-based pseudo paraphrase expansion; and (2) developing a meta-learning framework to progressively select valuable samples for fine-tuning a pre-trained language model BART on the sentential paraphrasing task. We demonstrate that our approach achieves significant improvements over existing unsupervised approaches, and is even comparable in performance with supervised state-of-the-arts.

pdf bib
Personalized Search-based Query Rewrite System for Conversational AI
Eunah Cho | Ziyan Jiang | Jie Hao | Zheng Chen | Saurabh Gupta | Xing Fan | Chenlei Guo
Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI

Query rewrite (QR) is an emerging component in conversational AI systems, reducing user defect. User defect is caused by various reasons, such as errors in the spoken dialogue system, users’ slips of the tongue or their abridged language. Many of the user defects stem from personalized factors, such as user’s speech pattern, dialect, or preferences. In this work, we propose a personalized search-based QR framework, which focuses on automatic reduction of user defect. We build a personalized index for each user, which encompasses diverse affinity layers to reflect personal preferences for each user in the conversational AI. Our personalized QR system contains retrieval and ranking layers. Supported by user feedback based learning, training our models does not require hand-annotated data. Experiments on personalized test set showed that our personalized QR system is able to correct systematic and user errors by utilizing phonetic and semantic inputs.

pdf bib
VAE based Text Style Transfer with Pivot Words Enhancement Learning
Haoran Xu | Sixing Lu | Zhongkai Sun | Chengyuan Ma | Chenlei Guo
Proceedings of the 18th International Conference on Natural Language Processing (ICON)

Text Style Transfer (TST) aims to alter the underlying style of the source text to another specific style while keeping the same content. Due to the scarcity of high-quality parallel training data, unsupervised learning has become a trending direction for TST tasks. In this paper, we propose a novel VAE based Text Style Transfer with pivOt Words Enhancement leaRning (VT-STOWER) method which utilizes Variational AutoEncoder (VAE) and external style embeddings to learn semantics and style distribution jointly. Additionally, we introduce pivot words learning, which is applied to learn decisive words for a specific style and thereby further improve the overall performance of the style transfer. The proposed VT-STOWER can be scaled to different TST scenarios given very limited and non-parallel training data with a novel and flexible style strength control mechanism. Experiments demonstrate that the VT-STOWER outperforms the state-of-the-art on sentiment, formality, and code-switching TST tasks.