Chenlei Guo


pdf bib
A Vocabulary-Free Multilingual Neural Tokenizer for End-to-End Task Learning
Md Mofijul Islam | Gustavo Aguilar | Pragaash Ponnusamy | Clint Solomon Mathialagan | Chengyuan Ma | Chenlei Guo
Proceedings of the 7th Workshop on Representation Learning for NLP

Subword tokenization is a commonly used input pre-processing step in most recent NLP models. However, it limits the models’ ability to leverage end-to-end task learning. Its frequency-based vocabulary creation compromises tokenization in low-resource languages, leading models to produce suboptimal representations. Additionally, the dependency on a fixed vocabulary limits the subword models’ adaptability across languages and domains. In this work, we propose a vocabulary-free neural tokenizer by distilling segmentation information from heuristic-based subword tokenization. We pre-train our character-based tokenizer by processing unique words from multilingual corpus, thereby extensively increasing word diversity across languages. Unlike the predefined and fixed vocabularies in subword methods, our tokenizer allows end-to-end task learning, resulting in optimal task-specific tokenization. The experimental results show that replacing the subword tokenizer with our neural tokenizer consistently improves performance on multilingual (NLI) and code-switching (sentiment analysis) tasks, with larger gains in low-resource languages. Additionally, our neural tokenizer exhibits a robust performance on downstream tasks when adversarial noise is present (typos and misspelling), further increasing the initial improvements over statistical subword tokenizers.


pdf bib
Personalized Search-based Query Rewrite System for Conversational AI
Eunah Cho | Ziyan Jiang | Jie Hao | Zheng Chen | Saurabh Gupta | Xing Fan | Chenlei Guo
Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI

Query rewrite (QR) is an emerging component in conversational AI systems, reducing user defect. User defect is caused by various reasons, such as errors in the spoken dialogue system, users’ slips of the tongue or their abridged language. Many of the user defects stem from personalized factors, such as user’s speech pattern, dialect, or preferences. In this work, we propose a personalized search-based QR framework, which focuses on automatic reduction of user defect. We build a personalized index for each user, which encompasses diverse affinity layers to reflect personal preferences for each user in the conversational AI. Our personalized QR system contains retrieval and ranking layers. Supported by user feedback based learning, training our models does not require hand-annotated data. Experiments on personalized test set showed that our personalized QR system is able to correct systematic and user errors by utilizing phonetic and semantic inputs.

pdf bib
Contextual Rephrase Detection for Reducing Friction in Dialogue Systems
Zhuoyi Wang | Saurabh Gupta | Jie Hao | Xing Fan | Dingcheng Li | Alexander Hanbo Li | Chenlei Guo
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

For voice assistants like Alexa, Google Assistant, and Siri, correctly interpreting users’ intentions is of utmost importance. However, users sometimes experience friction with these assistants, caused by errors from different system components or user errors such as slips of the tongue. Users tend to rephrase their queries until they get a satisfactory response. Rephrase detection is used to identify the rephrases and has long been treated as a task with pairwise input, which does not fully utilize the contextual information (e.g. users’ implicit feedback). To this end, we propose a contextual rephrase detection model ContReph to automatically identify rephrases from multi-turn dialogues. We showcase how to leverage the dialogue context and user-agent interaction signals, including the user’s implicit feedback and the time gap between different turns, which can help significantly outperform the pairwise rephrase detection models.

pdf bib
Learning to Selectively Learn for Weakly-supervised Paraphrase Generation
Kaize Ding | Dingcheng Li | Alexander Hanbo Li | Xing Fan | Chenlei Guo | Yang Liu | Huan Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Paraphrase generation is a longstanding NLP task that has diverse applications on downstream NLP tasks. However, the effectiveness of existing efforts predominantly relies on large amounts of golden labeled data. Though unsupervised endeavors have been proposed to alleviate this issue, they may fail to generate meaningful paraphrases due to the lack of supervision signals. In this work, we go beyond the existing paradigms and propose a novel approach to generate high-quality paraphrases with data of weak supervision. Specifically, we tackle the weakly-supervised paraphrase generation problem by: (1) obtaining abundant weakly-labeled parallel sentences via retrieval-based pseudo paraphrase expansion; and (2) developing a meta-learning framework to progressively select valuable samples for fine-tuning a pre-trained language model BART on the sentential paraphrasing task. We demonstrate that our approach achieves significant improvements over existing unsupervised approaches, and is even comparable in performance with supervised state-of-the-arts.