Chenliang Xu
2024
Random Smooth-based Certified Defense against Text Adversarial Attack
Zeliang Zhang
|
Wei Yao
|
Susan Liang
|
Chenliang Xu
Findings of the Association for Computational Linguistics: EACL 2024
Certified defense methods have identified their effectiveness against textual adversarial examples, which train models on the worst-case text generated by substituting words in original texts with synonyms. However, due to the discrete word embedding representations, the large search space hinders the robust training efficiency, resulting in significant time consumption. To overcome this challenge, motivated by the observation that synonym embedding has a small distance, we propose to treat the word substitution as a continuous perturbation on the word embedding representation. The proposed method Text-RS applies random smooth techniques to approximate the word substitution operation, offering a computationally efficient solution that outperforms conventional discrete methods and improves the robustness in training. The evaluation results demonstrate its effectiveness in defending against multiple textual adversarial attacks.
OSCaR: Object State Captioning and State Change Representation
Nguyen Nguyen
|
Jing Bi
|
Ali Vosoughi
|
Yapeng Tian
|
Pooyan Fazli
|
Chenliang Xu
Findings of the Association for Computational Linguistics: NAACL 2024
The capability of intelligent models to extrapolate and comprehend changes in object states is a crucial yet demanding aspect of AI research, particularly through the lens of human interaction in real-world settings. This task involves describing complex visual environments, identifying active objects, and interpreting their changes as conveyed through language. Traditional methods, which isolate object captioning and state change detection, offer a limited view of dynamic environments. Moreover, relying on a small set of symbolic words to represent changes has restricted the expressiveness of language. To address these challenges, in this paper, we introduce the Object State Captioning and State Change Representation (OSCaR) dataset and benchmark. OSCaR consists of 14,084 annotated video segments with nearly 1,000 unique objects from various egocentric video collections. It sets a new testbed for evaluating Multimodal Large Language Models (MLLMs). Our experiments demonstrate that while MLLMs show some skill, they lack a full understanding of object state changes. The benchmark includes a fine-tuned model that, despite initial capabilities, requires significant improvements in accuracy and generalization ability for effective understanding of these changes. Our code and dataset are available at https://github.com/nguyennm1024/OSCaR.
Can CLIP Count Stars? An Empirical Study on Quantity Bias in CLIP
Zeliang Zhang
|
Zhuo Liu
|
Mingqian Feng
|
Chenliang Xu
Findings of the Association for Computational Linguistics: EMNLP 2024
CLIP has demonstrated great versatility in adapting to various downstream tasks, such as image editing and generation, visual question answering, and video understanding. However, CLIP-based applications often suffer from misunderstandings regarding user intent, leading to discrepancies between the required number of objects and the actual outputs in image generation tasks. In this work, we empirically investigate the quantity bias in CLIP. By carefully designing different experimental settings and datasets, we comprehensively evaluate CLIP’s understanding of quantity from text, image, and cross-modal perspectives. Our experimental results reveal a quantity bias in CLIP embeddings, impacting the reliability of downstream tasks.
Search
Fix data
Co-authors
- Zeliang Zhang 2
- Jing Bi 1
- Pooyan Fazli 1
- Mingqian Feng 1
- Susan Liang 1
- show all...