Chenwei Wan
2025
EmoDynamiX : Prédiction de stratégies de dialogue pour le support émotionnel via la modélisation de mélange d’émotions et de la dynamique du discours
Chenwei Wan
|
Matthieu Labeau
|
Chloé Clavel
Actes des 32ème Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 2 : traductions d'articles publiés
Concevoir des systèmes conversationnels dotés d’une intelligence émotionnelle pour apporter du réconfort et des conseils aux personnes en détresse constitue un domaine de recherche particulièrement prometteur. Récemment, grâce aux avancées des grands modèles de langue (LLMs), les agents conversationnels entraînés de bout en bout sans étapes explicites de prédiction de stratégie de dialogue sont devenus plus courants. Cependant, la planification implicite de stratégie manque de transparence, et des études récentes montrent que la préférence inhérente des LLMs pour certaines stratégies socioémotionnelles nuit à la qualité du soutien émotionnel fourni. Pour relever ce défi, nous proposons de dissocier la prédiction de stratégies de la génération du langage et introduisons un nouveau cadre de prédiction de stratégie conversationnelle, EmoDynamiX, qui modélise la dynamique du discours entre les émotions fines du côté de l’utilisateur et les stratégies du système au moyen d’un graphe hétérogène, afin d’améliorer à la fois les performances et la transparence. Les résultats expérimentaux sur deux jeux de données de conversations pour le support émotionnel (ESC) montrent qu’EmoDynamiX surpasse de manière significative les méthodes antérieures à l’état de l’art (avec une meilleure maîtrise et un biais de préférence plus faible). Notre approche offre également une meilleure transparence en permettant de retracer le processus de prise de décision.
EmoDynamiX: Emotional Support Dialogue Strategy Prediction by Modelling MiXed Emotions and Discourse Dynamics
Chenwei Wan
|
Matthieu Labeau
|
Chloé Clavel
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Designing emotionally intelligent conversational systems to provide comfort and advice to people experiencing distress is a compelling area of research. Recently, with advancements in large language models (LLMs), end-to-end dialogue agents without explicit strategy prediction steps have become prevalent. However, implicit strategy planning lacks transparency, and recent studies show that LLMs’ inherent preference bias towards certain socio-emotional strategies hinders the delivery of high-quality emotional support. To address this challenge, we propose decoupling strategy prediction from language generation, and introduce a novel dialogue strategy prediction framework, EmoDynamiX, which models the discourse dynamics between user fine-grained emotions and system strategies using a heterogeneous graph for better performance and transparency. Experimental results on two ESC datasets show EmoDynamiX outperforms previous state-of-the-art methods with a significant margin (better proficiency and lower preference bias). Our approach also exhibits better transparency by allowing backtracing of decision making.