Chenyu You


2023

pdf bib
Multimodal Prompt Learning for Product Title Generation with Extremely Limited Labels
Bang Yang | Fenglin Liu | Zheng Li | Qingyu Yin | Chenyu You | Bing Yin | Yuexian Zou
Findings of the Association for Computational Linguistics: ACL 2023

Generating an informative and attractive title for the product is a crucial task for e-commerce. Most existing works follow the standard multimodal natural language generation approaches, e.g., image captioning, and employ the large scale of human-labelled datasets to train desirable models. However, for novel products, especially in a different domain, there are few existing labelled data. In this paper, we propose a prompt-based approach, i.e., the Multimodal Prompt Learning framework, to accurately and efficiently generate titles for novel products with limited labels. We observe that the core challenges of novel product title generation are the understanding of novel product characteristics and the generation of titles in a novel writing style. To this end, we build a set of multimodal prompts from different modalities to preserve the corresponding characteristics and writing styles of novel products. As a result, with extremely limited labels for training, the proposed method can retrieve the multimodal prompts to generate desirable titles for novel products. The experiments and analyses are conducted on five novel product categories under both the in-domain and out-of-domain experimental settings. The results show that, with only 1% of downstream labelled data for training, our proposed approach achieves the best few-shot results and even achieves competitive results with fully-supervised methods trained on 100% of training data; With the full labelled data for training, our method achieves state-of-the-art results.

pdf bib
Large Language Models Are Partially Primed in Pronoun Interpretation
Suet-Ying Lam | Qingcheng Zeng | Kexun Zhang | Chenyu You | Rob Voigt
Findings of the Association for Computational Linguistics: ACL 2023

While a large body of literature suggests that large language models (LLMs) acquire rich linguistic representations, little is known about whether they adapt to linguistic biases in a human-like way. The present study probes this question by asking whether LLMs display human-like referential biases using stimuli and procedures from real psycholinguistic experiments. Recent psycholinguistic studies suggest that humans adapt their referential biases with recent exposure to referential patterns; closely replicating three relevant psycholinguistic experiments from Johnson & Arnold (2022) in an in-context learning (ICL) framework, we found that InstructGPT adapts its pronominal interpretations in response to the frequency of referential patterns in the local discourse, though in a limited fashion: adaptation was only observed relative to syntactic but not semantic biases. By contrast, FLAN-UL2 fails to generate meaningful patterns. Our results provide further evidence that contemporary LLMs discourse representations are sensitive to syntactic patterns in the local context but less so to semantic patterns. Our data and code are available at https://github.com/zkx06111/llm_priming.

2022

pdf bib
End-to-end Spoken Conversational Question Answering: Task, Dataset and Model
Chenyu You | Nuo Chen | Fenglin Liu | Shen Ge | Xian Wu | Yuexian Zou
Findings of the Association for Computational Linguistics: NAACL 2022

In spoken question answering, the systems are designed to answer questions from contiguous text spans within the related speech transcripts. However, the most natural way that human seek or test their knowledge is via human conversations. Therefore, we propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling the systems to model complex dialogues flow given the speech documents. In this task, our main objective is to build the system to deal with conversational questions based on the audio recordings, and to explore the plausibility of providing more cues from different modalities with systems in information gathering. To this end, instead of directly adopting automatically generated speech transcripts with highly noisy data, we propose a novel unified data distillation approach, DDNet, which effectively ingests cross-modal information to achieve fine-grained representations of the speech and language modalities. Moreover, we propose a simple and novel mechanism, termed Dual Attention, by encouraging better alignments between audio and text to ease the process of knowledge transfer. To evaluate the capacity of SCQA systems in a dialogue-style interaction, we assemble a Spoken Conversational Question Answering (Spoken-CoQA) dataset with more than 40k question-answer pairs from 4k conversations. We first show that the performance of the existing state-of-the-art methods significantly degrade on our dataset, hence demonstrating the necessity of incorporating cross-modal information to achieve good performance gains. Our experimental results demonstrate that our proposed method achieves superior performance in spoken conversational question answering. Codes and datasets will be made publicly available.

2021

pdf bib
Self-supervised Contrastive Cross-Modality Representation Learning for Spoken Question Answering
Chenyu You | Nuo Chen | Yuexian Zou
Findings of the Association for Computational Linguistics: EMNLP 2021

Spoken question answering (SQA) requires fine-grained understanding of both spoken documents and questions for the optimal answer prediction. In this paper, we propose novel training schemes for spoken question answering with a self-supervised training stage and a contrastive representation learning stage. In the self-supervised stage, we propose three auxiliary self-supervised tasks, including utterance restoration, utterance insertion, and question discrimination, and jointly train the model to capture consistency and coherence among speech documents without any additional data or annotations. We then propose to learn noise-invariant utterance representations in a contrastive objective by adopting multiple augmentation strategies, including span deletion and span substitution. Besides, we design a Temporal-Alignment attention to semantically align the speech-text clues in the learned common space and benefit the SQA tasks. By this means, the training schemes can more effectively guide the generation model to predict more proper answers. Experimental results show that our model achieves state-of-the-art results on three SQA benchmarks. Our code will be publicly available after publication.