Chien-Sheng Wu


2024

pdf bib
Summary of a Haystack: A Challenge to Long-Context LLMs and RAG Systems
Philippe Laban | Alexander Fabbri | Caiming Xiong | Chien-Sheng Wu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

LLMs and RAG systems are now capable of handling millions of input tokens or more. However, evaluating the output quality of such systems on long-context tasks remains challenging, as tasks like Needle-in-a-Haystack lack complexity. In this work, we argue that summarization can play a central role in such evaluation. We design a procedure to synthesize Haystacks of documents, ensuring that specific insights repeat across documents. The “Summary of a Haystack” (SummHay) task then requires a system to process the Haystack and generate, given a query, a summary that identifies the relevant insights and precisely cites the source documents. Since we have precise knowledge of what insights should appear in a haystack summary and what documents should be cited, we implement a highly reproducible automatic evaluation that can score summaries on two aspects – Coverage and Citation. We generate Haystacks in two domains (conversation, news), and perform a large-scale evaluation of 10 LLMs and corresponding 50 RAG systems. Our findings indicate that SummHay is an open challenge for current systems, as even systems provided with an Oracle signal of document relevance lag our estimate of human performance (56%) by 10+ points on a Joint Score. Without a retriever, long-context LLMs like GPT-4o and Claude 3 Opus score below 20% on SummHay. We show SummHay can also be used to study enterprise RAG systems and position bias in long-context models. We hope future systems can equal and surpass human performance on SummHay.

pdf bib
Prompt Leakage effect and mitigation strategies for multi-turn LLM Applications
Divyansh Agarwal | Alexander Fabbri | Ben Risher | Philippe Laban | Shafiq Joty | Chien-Sheng Wu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Prompt leakage poses a compelling security and privacy threat in LLM applications. Leakage of system prompts may compromise intellectual property, and act as adversarial reconnaissance for an attacker. A systematic evaluation of prompt leakage threats and mitigation strategies is lacking, especially for multi-turn LLM interactions. In this paper, we systematically investigate LLM vulnerabilities against prompt leakage for 10 closed- and open-source LLMs, across four domains. We design a unique threat model which leverages the LLM sycophancy effect and elevates the average attack success rate (ASR) from 17.7% to 86.2% in a multi-turn setting. Our standardized setup further allows dissecting leakage of specific prompt contents such as task instructions and knowledge documents. We measure the mitigation effect of 7 black-box defense strategies, along with finetuning an open-source model to defend against leakage attempts. We present different combination of defenses against our threat model, including a cost analysis. Our study highlights key takeaways for building secure LLM applications and provides directions for research in multi-turn LLM interactions.

pdf bib
Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization
Yixin Liu | Alexander Fabbri | Jiawen Chen | Yilun Zhao | Simeng Han | Shafiq Joty | Pengfei Liu | Dragomir Radev | Chien-Sheng Wu | Arman Cohan
Findings of the Association for Computational Linguistics: NAACL 2024

While large language models (LLMs) can already achieve strong performance on standard generic summarization benchmarks, their performance on more complex summarization task settings is less studied. Therefore, we benchmark LLMs on instruction controllable text summarization, where the model input consists of both a source article and a natural language requirement for desired summary characteristics. To this end, we curate an evaluation-only dataset for this task setting and conduct human evaluations of five LLM-based systems to assess their instruction-following capabilities in controllable summarization. We then benchmark LLM-based automatic evaluation for this task with 4 different evaluation protocols and 11 LLMs, resulting in 40 evaluation methods. Our study reveals that instruction controllable text summarization remains a challenging task for LLMs, since (1) all LLMs evaluated still make factual and other types of errors in their summaries; (2) no LLM-based evaluation methods can achieve a strong alignment with human annotators when judging the quality of candidate summaries; (3) different LLMs show large performance gaps in summary generation and evaluation capabilities. We make our collected benchmark InstruSum publicly available to facilitate future research in this direction.

pdf bib
Embrace Divergence for Richer Insights: A Multi-document Summarization Benchmark and a Case Study on Summarizing Diverse Information from News Articles
Kung-Hsiang Huang | Philippe Laban | Alexander Fabbri | Prafulla Kumar Choubey | Shafiq Joty | Caiming Xiong | Chien-Sheng Wu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Previous research in multi-document news summarization has typically concentrated on collating information that all sources agree upon. However, the summarization of diverse information dispersed across multiple articles about an event remains underexplored. In this paper, we propose a new task of summarizing diverse information encountered in multiple news articles encompassing the same event. To facilitate this task, we outlined a data collection schema for identifying diverse information and curated a dataset named DiverseSumm. The dataset includes 245 news stories, with each story comprising 10 news articles and paired with a human-validated reference. Next, to enable consistent automatic evaluation, we conducted a comprehensive analysis to pinpoint the position and verbosity biases when utilizing Large Language Model (LLM)-based metrics for evaluating the coverage and faithfulness of summaries. Through correlation analyses, we outline the best practices for effectively using automatic LLM-based metrics on the DiverseSumm dataset. Finally, we study how LLMs summarize multiple news articles by analyzing which type of diverse information LLMs are capable of identifying. Our analyses suggest that despite the extraordinary capabilities of LLMs in single-document summarization, the proposed task remains a complex challenge for them mainly due to their limited coverage, with GPT-4 only able to cover under 40% of the diverse information on average.

2023

pdf bib
Did You Read the Instructions? Rethinking the Effectiveness of Task Definitions in Instruction Learning
Fan Yin | Jesse Vig | Philippe Laban | Shafiq Joty | Caiming Xiong | Chien-Sheng Wu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have shown impressive performance in following natural language instructions to solve unseen tasks. However, it remains unclear whether models truly understand task definitions and whether the human-written definitions are optimal. In this paper, we systematically study the role of task definitions in instruction learning. We first conduct an ablation analysis informed by human annotations to understand which parts of a task definition are most important, and find that model performance only drops substantially when removing contents describing the task output, in particular label information. Next, we propose an automatic algorithm to compress task definitions to a minimal supporting set of tokens, and find that 60% of tokens can be removed while maintaining or even improving model performance. Based on these results, we propose two strategies to help models better leverage task instructions: (1) providing only key information for tasks in a common structured format, and (2) adding a meta-tuning stage to help the model better understand the definitions. With these two strategies, we achieve a 4.2 Rouge-L improvement over 119 unseen test tasks.

pdf bib
Revisiting the Gold Standard: Grounding Summarization Evaluation with Robust Human Evaluation
Yixin Liu | Alex Fabbri | Pengfei Liu | Yilun Zhao | Linyong Nan | Ruilin Han | Simeng Han | Shafiq Joty | Chien-Sheng Wu | Caiming Xiong | Dragomir Radev
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Human evaluation is the foundation upon which the evaluation of both summarization systems and automatic metrics rests. However, existing human evaluation studies for summarization either exhibit a low inter-annotator agreement or have insufficient scale, and an in-depth analysis of human evaluation is lacking. Therefore, we address the shortcomings of existing summarization evaluation along the following axes: (1) We propose a modified summarization salience protocol, Atomic Content Units (ACUs), which is based on fine-grained semantic units and allows for a high inter-annotator agreement. (2) We curate the Robust Summarization Evaluation (RoSE) benchmark, a large human evaluation dataset consisting of 22,000 summary-level annotations over 28 top-performing systems on three datasets. (3) We conduct a comparative study of four human evaluation protocols, underscoring potential confounding factors in evaluation setups. (4) We evaluate 50 automatic metrics and their variants using the collected human annotations across evaluation protocols and demonstrate how our benchmark leads to more statistically stable and significant results. The metrics we benchmarked include recent methods based on large language models (LLMs), GPTScore and G-Eval. Furthermore, our findings have important implications for evaluating LLMs, as we show that LLMs adjusted by human feedback (e.g., GPT-3.5) may overfit unconstrained human evaluation, which is affected by the annotators’ prior, input-agnostic preferences, calling for more robust, targeted evaluation methods.

pdf bib
SWiPE: A Dataset for Document-Level Simplification of Wikipedia Pages
Philippe Laban | Jesse Vig | Wojciech Kryscinski | Shafiq Joty | Caiming Xiong | Chien-Sheng Wu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text simplification research has mostly focused on sentence-level simplification, even though many desirable edits - such as adding relevant background information or reordering content - may require document-level context. Prior work has also predominantly framed simplification as a single-step, input-to-output task, only implicitly modeling the fine-grained, span-level edits that elucidate the simplification process. To address both gaps, we introduce the SWiPE dataset, which reconstructs the document-level editing process from English Wikipedia (EW) articles to paired Simple Wikipedia (SEW) articles. In contrast to prior work, SWiPE leverages the entire revision history when pairing pages in order to better identify simplification edits. We work with Wikipedia editors to annotate 5,000 EW-SEW document pairs, labeling more than 40,000 edits with proposed 19 categories. To scale our efforts, we propose several models to automatically label edits, achieving an F-1 score of up to 70.9, indicating that this is a tractable but challenging NLU task. Finally, we categorize the edits produced by several simplification models and find that SWiPE-trained models generate more complex edits while reducing unwanted edits.

pdf bib
Socratic Pretraining: Question-Driven Pretraining for Controllable Summarization
Artidoro Pagnoni | Alex Fabbri | Wojciech Kryscinski | Chien-Sheng Wu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In long document controllable summarization, where labeled data is scarce, pretrained models struggle to adapt to the task and effectively respond to user queries. In this paper, we introduce Socratic pretraining, a question-driven, unsupervised pretraining objective specifically designed to improve controllability in summarization tasks. By training a model to generate and answer relevant questions in a given context, Socratic pretraining enables the model to more effectively adhere to user-provided queries and identify relevant content to be summarized. We demonstrate the effectiveness of this approach through extensive experimentation on two summarization domains, short stories and dialogue, and multiple control strategies: keywords, questions, and factoid QA pairs. Our pretraining method relies only on unlabeled documents and a question generation system and outperforms pre-finetuning approaches that use additional supervised data. Furthermore, our results show that Socratic pretraining cuts task-specific labeled data requirements in half, is more faithful to user-provided queries, and achieves state-of-the-art performance on QMSum and SQuALITY.

pdf bib
CaPE: Contrastive Parameter Ensembling for Reducing Hallucination in Abstractive Summarization
Prafulla Kumar Choubey | Alex Fabbri | Jesse Vig | Chien-Sheng Wu | Wenhao Liu | Nazneen Rajani
Findings of the Association for Computational Linguistics: ACL 2023

Hallucination is a known issue for neural abstractive summarization models. Recent work suggests that the degree of hallucination may depend on factual errors in the training data. In this work, we propose a new method called Contrastive Parameter Ensembling (CaPE) to use training data more effectively, utilizing variations in noise in training samples to reduce hallucination. Starting with a base model fine-tuned on an entire dataset, we additionally train expert and anti-expert models on clean and noisy subsets of the data, respectively. We then adjust the parameters of the base model by adding (subtracting) the parameters of the expert (anti-expert), advancing the recent work on additive parameter ensembling approaches. Trained on a much smaller data subset, expert and anti-expert models only fractionally (<14%) increases the total training time. Further, CaPE uses parameter ensembling and does not increase the inference time. Experimental results show that CaPE improves performance across different automatic factual metrics and human evaluation, with a maximum improvement of 16.69% and 15.38% on summary-level dependency-arc entailment accuracy for the XSUM and CNN/DM datasets. The CaPE model performs comparably to the base model on metrics of informativeness such as ROUGE.

pdf bib
Lexical Repetitions Lead to Rote Learning: Unveiling the Impact of Lexical Overlap in Train and Test Reference Summaries
Prafulla Choubey | Alexander Fabbri | Caiming Xiong | Chien-Sheng Wu
Findings of the Association for Computational Linguistics: EMNLP 2023

Ideal summarization models should generalize to novel summary-worthy content without remembering reference training summaries by rote. However, a single average performance score on the entire test set is inadequate in determining such model competencies. We propose a fine-grained evaluation protocol by partitioning a test set based on the lexical similarity of reference test summaries with training summaries. We observe up to a 5x (1.2x) difference in ROUGE-2 (entity recall) scores between the subsets with the lowest and highest similarity. Next, we show that such training repetitions also make a model vulnerable to rote learning, reproducing data artifacts such as factual errors, especially when reference test summaries are lexically close to training summaries. Consequently, we propose to limit lexical repetitions in training summaries during both supervised fine-tuning and likelihood calibration stages to improve the performance on novel test cases while retaining average performance. Our automatic and human evaluations on novel test subsets and recent news articles show that limiting lexical repetitions in training summaries can prevent rote learning and improve generalization.

pdf bib
Salespeople vs SalesBot: Exploring the Role of Educational Value in Conversational Recommender Systems
Lidiya Murakhovs’ka | Philippe Laban | Tian Xie | Caiming Xiong | Chien-Sheng Wu
Findings of the Association for Computational Linguistics: EMNLP 2023

Making big purchases requires consumers to research or consult a salesperson to gain domain expertise. However, existing conversational recommender systems (CRS) often overlook users’ lack of background knowledge, focusing solely on gathering preferences. In this work, we define a new problem space for conversational agents that aim to provide both product recommendations and educational value through mixed-type mixed-initiative dialog. We introduce SalesOps, a framework that facilitates the simulation and evaluation of such systems by leveraging recent advancements in large language models (LLMs). We build SalesBot and ShopperBot, a pair of LLM-powered agents that can simulate either side of the framework. A comprehensive human study compares SalesBot against professional salespeople, revealing that although SalesBot approaches professional performance in terms of fluency and informativeness, it lags behind in recommendation quality. We emphasize the distinct limitations both face in providing truthful information, highlighting the challenges of ensuring faithfulness in the CRS context. We release our code and make all data available.

pdf bib
SummEdits: Measuring LLM Ability at Factual Reasoning Through The Lens of Summarization
Philippe Laban | Wojciech Kryscinski | Divyansh Agarwal | Alexander Fabbri | Caiming Xiong | Shafiq Joty | Chien-Sheng Wu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

With the recent appearance of LLMs in practical settings, having methods that can effectively detect factual inconsistencies is crucial to reduce the propagation of misinformation and improve trust in model outputs. When testing on existing factual consistency benchmarks, we find that a few large language models (LLMs) perform competitively on classification benchmarks for factual inconsistency detection compared to traditional non-LLM methods. However, a closer analysis reveals issues with existing evaluation benchmarks, affecting evaluation precision. To address this, we propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits. This new benchmark is 20 times more cost-effective per sample than previous benchmarks and highly reproducible, as we estimate inter-annotator agreement at about 0.9. Most LLMs struggle on SummEdits, with performance close to random chance. The best-performing model, GPT-4, is still 8% below estimated human performance, highlighting the gaps in LLMs’ ability to reason about facts and detect inconsistencies when they occur.

pdf bib
Towards Interpretable and Efficient Automatic Reference-Based Summarization Evaluation
Yixin Liu | Alexander Fabbri | Yilun Zhao | Pengfei Liu | Shafiq Joty | Chien-Sheng Wu | Caiming Xiong | Dragomir Radev
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Interpretability and efficiency are two important considerations for the adoption of neural automatic metrics. In this work, we develop strong-performing automatic metrics for reference-based summarization evaluation, based on a two-stage evaluation pipeline that first extracts basic information units from one text sequence and then checks the extracted units in another sequence. The metrics we developed include two-stage metrics that can provide high interpretability at both the fine-grained unit level and summary level, and one-stage metrics that achieve a balance between efficiency and interpretability. We make the developed tools publicly available at https://github.com/Yale-LILY/AutoACU.

pdf bib
INTELMO: Enhancing Models’ Adoption of Interactive Interfaces
Chunxu Yang | Chien-Sheng Wu | Lidiya Murakhovs’ka | Philippe Laban | Xiang Chen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

This paper presents INTELMO, an easy-to-use library to help model developers adopt user-faced interactive interfaces and articles from real-time RSS sources for their language models. The library categorizes common NLP tasks and provides default style patterns, streamlining the process of creating interfaces with minimal code modifications while ensuring an intuitive user experience. Moreover, INTELMO employs a multi-granular hierarchical abstraction to provide developers with fine-grained and flexible control over user interfaces. INTELMO is under active development, with document available at https://intelmo.github.io.

2022

pdf bib
QAFactEval: Improved QA-Based Factual Consistency Evaluation for Summarization
Alexander Fabbri | Chien-Sheng Wu | Wenhao Liu | Caiming Xiong
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Factual consistency is an essential quality of text summarization models in practical settings. Existing work in evaluating this dimension can be broadly categorized into two lines of research, entailment-based and question answering (QA)-based metrics, and different experimental setups often lead to contrasting conclusions as to which paradigm performs the best. In this work, we conduct an extensive comparison of entailment and QA-based metrics, demonstrating that carefully choosing the components of a QA-based metric, especially question generation and answerability classification, is critical to performance. Building on those insights, we propose an optimized metric, which we call QAFactEval, that leads to a 14% average improvement over previous QA-based metrics on the SummaC factual consistency benchmark, and also outperforms the best-performing entailment-based metric. Moreover, we find that QA-based and entailment-based metrics can offer complementary signals and be combined into a single metric for a further performance boost.

pdf bib
DialFact: A Benchmark for Fact-Checking in Dialogue
Prakhar Gupta | Chien-Sheng Wu | Wenhao Liu | Caiming Xiong
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Fact-checking is an essential tool to mitigate the spread of misinformation and disinformation. We introduce the task of fact-checking in dialogue, which is a relatively unexplored area. We construct DialFact, a testing benchmark dataset of 22,245 annotated conversational claims, paired with pieces of evidence from Wikipedia. There are three sub-tasks in DialFact: 1) Verifiable claim detection task distinguishes whether a response carries verifiable factual information; 2) Evidence retrieval task retrieves the most relevant Wikipedia snippets as evidence; 3) Claim verification task predicts a dialogue response to be supported, refuted, or not enough information. We found that existing fact-checking models trained on non-dialogue data like FEVER fail to perform well on our task, and thus, we propose a simple yet data-efficient solution to effectively improve fact-checking performance in dialogue. We point out unique challenges in DialFact such as handling the colloquialisms, coreferences, and retrieval ambiguities in the error analysis to shed light on future research in this direction.

pdf bib
QAConv: Question Answering on Informative Conversations
Chien-Sheng Wu | Andrea Madotto | Wenhao Liu | Pascale Fung | Caiming Xiong
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper introduces QAConv, a new question answering (QA) dataset that uses conversations as a knowledge source. We focus on informative conversations, including business emails, panel discussions, and work channels. Unlike open-domain and task-oriented dialogues, these conversations are usually long, complex, asynchronous, and involve strong domain knowledge. In total, we collect 34,608 QA pairs from 10,259 selected conversations with both human-written and machine-generated questions. We use a question generator and a dialogue summarizer as auxiliary tools to collect and recommend questions. The dataset has two testing scenarios: chunk mode and full mode, depending on whether the grounded partial conversation is provided or retrieved. Experimental results show that state-of-the-art pretrained QA systems have limited zero-shot performance and tend to predict our questions as unanswerable. Our dataset provides a new training and evaluation testbed to facilitate QA on conversations research.

pdf bib
UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models
Tianbao Xie | Chen Henry Wu | Peng Shi | Ruiqi Zhong | Torsten Scholak | Michihiro Yasunaga | Chien-Sheng Wu | Ming Zhong | Pengcheng Yin | Sida I. Wang | Victor Zhong | Bailin Wang | Chengzu Li | Connor Boyle | Ansong Ni | Ziyu Yao | Dragomir Radev | Caiming Xiong | Lingpeng Kong | Rui Zhang | Noah A. Smith | Luke Zettlemoyer | Tao Yu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Structured knowledge grounding (SKG) leverages structured knowledge to complete user requests, such as semantic parsing over databases and question answering over knowledge bases. Since the inputs and outputs of SKG tasks are heterogeneous, they have been studied separately by different communities, which limits systematic and compatible research on SKG. In this paper, we overcome this limitation by proposing the UnifiedSKG framework, which unifies 21 SKG tasks into a text-to-text format, aiming to promote systematic SKG research, instead of being exclusive to a single task, domain, or dataset. We use UnifiedSKG to benchmark T5 with different sizes and show that T5, with simple modifications when necessary, achieves state-of-the-art performance on almost all of the 21 tasks. We further demonstrate that multi-task prefix-tuning improves the performance on most tasks, largely improving the overall performance. UnifiedSKG also facilitates the investigation of zero-shot and few-shot learning, and we show that T0, GPT-3, and Codex struggle in zero-shot and few-shot learning for SKG. We also use UnifiedSKG to conduct a series of controlled experiments on structured knowledge encoding variants across SKG tasks. UnifiedSKG is easily extensible to more tasks, and it is open-sourced at https://github.com/hkunlp/unifiedskg.

pdf bib
Near-Negative Distinction: Giving a Second Life to Human Evaluation Datasets
Philippe Laban | Chien-Sheng Wu | Wenhao Liu | Caiming Xiong
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Precisely assessing the progress in natural language generation (NLG) tasks is challenging, and human evaluation to establish a preference in a model’s output over another is often necessary.However, human evaluation is usually costly, difficult to reproduce, and non-reusable.In this paper, we propose a new and simple automatic evaluation method for NLG called Near-Negative Distinction (NND) that repurposes prior human annotations into NND tests.In an NND test, an NLG model must place a higher likelihood on a high-quality output candidate than on a near-negative candidate with a known error.Model performance is established by the number of NND tests a model passes, as well as the distribution over task-specific errors the model fails on.Through experiments on three NLG tasks (question generation, question answering, and summarization), we show that NND achieves a higher correlation with human judgments than standard NLG evaluation metrics. We then illustrate NND evaluation in four practical scenarios, for example performing fine-grain model analysis, or studying model training dynamics. Our findings suggest that NND can give a second life to human annotations and provide low-cost NLG evaluation.

pdf bib
Conformal Predictor for Improving Zero-Shot Text Classification Efficiency
Prafulla Kumar Choubey | Yu Bai | Chien-Sheng Wu | Wenhao Liu | Nazneen Rajani
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Pre-trained language models (PLMs) have been shown effective for zero-shot (0shot) text classification. 0shot models based on natural language inference (NLI) and next sentence prediction (NSP) employ cross-encoder architecture and infer by making a forward pass through the model for each label-text pair separately. This increases the computational cost to make inferences linearly in the number of labels. In this work, we improve the efficiency of such cross-encoder-based 0shot models by restricting the number of likely labels using another fast base classifier-based conformal predictor (CP) calibrated on samples labeled by the 0shot model. Since a CP generates prediction sets with coverage guarantees, it reduces the number of target labels without excluding the most probable label based on the 0shot model. We experiment with three intent and two topic classification datasets. With a suitable CP for each dataset, we reduce the average inference time for NLI- and NSP-based models by 25.6% and 22.2% respectively, without dropping performance below the predefined error rate of 1%.

pdf bib
Improving Factual Consistency in Summarization with Compression-Based Post-Editing
Alex Fabbri | Prafulla Kumar Choubey | Jesse Vig | Chien-Sheng Wu | Caiming Xiong
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

State-of-the-art summarization models still struggle to be factually consistent with the input text. A model-agnostic way to address this problem is post-editing the generated summaries. However, existing approaches typically fail to remove entity errors if a suitable input entity replacement is not available or may insert erroneous content. In our work, we focus on removing extrinsic entity errors, or entities not in the source, to improve consistency while retaining the summary’s essential information and form. We propose to use sentence-compression data to train the post-editing model to take a summary with extrinsic entity errors marked with special tokens and output a compressed, well-formed summary with those errors removed. We show that this model improves factual consistency while maintaining ROUGE, improving entity precision by up to 30% on XSum, and that this model can be applied on top of another post-editor, improving entity precision by up to a total of 38%. We perform an extensive comparison of post-editing approaches that demonstrate trade-offs between factual consistency, informativeness, and grammaticality, and we analyze settings where post-editors show the largest improvements.

pdf bib
Quiz Design Task: Helping Teachers Create Quizzes with Automated Question Generation
Philippe Laban | Chien-Sheng Wu | Lidiya Murakhovs’ka | Wenhao Liu | Caiming Xiong
Findings of the Association for Computational Linguistics: NAACL 2022

Question generation (QGen) models are often evaluated with standardized NLG metrics that are based on n-gram overlap. In this paper, we measure whether these metric improvements translate to gains in a practical setting, focusing on the use case of helping teachers automate the generation of reading comprehension quizzes. In our study, teachers building a quiz receive question suggestions, which they can either accept or refuse with a reason. Even though we find that recent progress in QGen leads to a significant increase in question acceptance rates, there is still large room for improvement, with the best model having only 68.4% of its questions accepted by the ten teachers who participated in our study. We then leverage the annotations we collected to analyze standard NLG metrics and find that model performance has reached projected upper-bounds, suggesting new automatic metrics are needed to guide QGen research forward.

pdf bib
Exploring Neural Models for Query-Focused Summarization
Jesse Vig | Alexander Fabbri | Wojciech Kryscinski | Chien-Sheng Wu | Wenhao Liu
Findings of the Association for Computational Linguistics: NAACL 2022

Query-focused summarization (QFS) aims to produce summaries that answer particular questions of interest, enabling greater user control and personalization. While recently released datasets, such as QMSum or AQuaMuSe, facilitate research efforts in QFS, the field lacks a comprehensive study of the broad space of applicable modeling methods. In this paper we conduct a systematic exploration of neural approaches to QFS, considering two general classes of methods: two-stage extractive-abstractive solutions and end-to-end models. Within those categories, we investigate existing models and explore strategies for transfer learning. We also present two modeling extensions that achieve state-of-the-art performance on the QMSum dataset, up to a margin of 3.38 ROUGE-1, 3.72 ROUGE2, and 3.28 ROUGE-L when combined with transfer learning strategies. Results from human evaluation suggest that the best models produce more comprehensive and factually consistent summaries compared to a baseline model. Code and checkpoints are made publicly available: https://github.com/salesforce/query-focused-sum.

pdf bib
MixQG: Neural Question Generation with Mixed Answer Types
Lidiya Murakhovs’ka | Chien-Sheng Wu | Philippe Laban | Tong Niu | Wenhao Liu | Caiming Xiong
Findings of the Association for Computational Linguistics: NAACL 2022

Asking good questions is an essential ability for both human and machine intelligence. However, existing neural question generation approaches mainly focus on short factoid type of answers. In this paper, we introduce a neural question generator, MixQG, to bridge this gap. We combine nine question answering datasets with diverse answer types, including yes/no, multiple-choice, extractive, and abstractive answers, to train a single generative model. We show with empirical results that our model outperforms existing work in both seen and unseen domains, and can generate questions with different cognitive levels when conditioned on different answer types. We run a human evaluation study to assess the quality of generated questions and find that MixQG outperforms the next best model by 10%. Our code and model checkpoints will be released and integrated with the HuggingFace library to facilitate various downstream applications.

pdf bib
Discord Questions: A Computational Approach To Diversity Analysis in News Coverage
Philippe Laban | Chien-Sheng Wu | Lidiya Murakhovs’ka | Xiang Chen | Caiming Xiong
Findings of the Association for Computational Linguistics: EMNLP 2022

There are many potential benefits to news readers accessing diverse sources. Modern news aggregators do the hard work of organizing the news, offering readers a plethora of source options, but choosing which source to read remains challenging.We propose a new framework to assist readers in identifying source differences and gaining an understanding of news coverage diversity.The framework is based on the generation of Discord Questions: questions with a diverse answer pool, explicitly illustrating source differences.To assemble a prototype of the framework, we focus on two components: (1) discord question generation, the task of generating questions answered differently by sources, for which we propose an automatic scoring method, and create a model that improves performance from current question generation (QG) methods by 5%, (2) answer consolidation, the task of grouping answers to a question that are semantically similar, for which we collect data and repurpose a method that achieves 81% balanced accuracy on our realistic test set.We illustrate the framework’s feasibility through a prototype interface. Even though model performance at discord QG still lags human performance by more than 15%, generated questions are judged to be more interesting than factoid questions and can reveal differences in the level of detail, sentiment, and reasoning of sources in news coverage. Code is available at https://github.com/Salesforce/discord_questions.

pdf bib
Numerical Correlation in Text
Daniel Spokoyny | Chien-Sheng Wu | Caiming Xiong
Proceedings of the 1st Workshop on Mathematical Natural Language Processing (MathNLP)

Evaluation of quantitative reasoning of large language models is an important step towards understanding their current capabilities and limitations. We propose a new task, Numerical Correlation in Text, which requires models to identify the correlation between two numbers in a sentence. To this end, we introduce a new dataset, which contains over 2,000 Wikipedia sentences with two numbers and their correlation labels. Using this dataset we are able to show that recent numerically aware pretraining methods for language models do not help generalization on this task posing a challenge for future work in this area.

2021

pdf bib
Controllable Abstractive Dialogue Summarization with Sketch Supervision
Chien-Sheng Wu | Linqing Liu | Wenhao Liu | Pontus Stenetorp | Caiming Xiong
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Find or Classify? Dual Strategy for Slot-Value Predictions on Multi-Domain Dialog State Tracking
Jianguo Zhang | Kazuma Hashimoto | Chien-Sheng Wu | Yao Wang | Philip Yu | Richard Socher | Caiming Xiong
Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics

Dialog state tracking (DST) is a core component in task-oriented dialog systems. Existing approaches for DST mainly fall into one of two categories, namely, ontology-based and ontology-free methods. An ontology-based method selects a value from a candidate-value list for each target slot, while an ontology-free method extracts spans from dialog contexts. Recent work introduced a BERT-based model to strike a balance between the two methods by pre-defining categorical and non-categorical slots. However, it is not clear enough which slots are better handled by either of the two slot types, and the way to use the pre-trained model has not been well investigated. In this paper, we propose a simple yet effective dual-strategy model for DST, by adapting a single BERT-style reading comprehension model to jointly handle both the categorical and non-categorical slots. Our experiments on the MultiWOZ datasets show that our method significantly outperforms the BERT-based counterpart, finding that the key is a deep interaction between the domain-slot and context information. When evaluated on noisy (MultiWOZ 2.0) and cleaner (MultiWOZ 2.1) settings, our method performs competitively and robustly across the two different settings. Our method sets the new state of the art in the noisy setting, while performing more robustly than the best model in the cleaner setting. We also conduct a comprehensive error analysis on the dataset, including the effects of the dual strategy for each slot, to facilitate future research.

pdf bib
Getting To Know You: User Attribute Extraction from Dialogues
Chien-Sheng Wu | Andrea Madotto | Zhaojiang Lin | Peng Xu | Pascale Fung
Proceedings of the Twelfth Language Resources and Evaluation Conference

User attributes provide rich and useful information for user understanding, yet structured and easy-to-use attributes are often sparsely populated. In this paper, we leverage dialogues with conversational agents, which contain strong suggestions of user information, to automatically extract user attributes. Since no existing dataset is available for this purpose, we apply distant supervision to train our proposed two-stage attribute extractor, which surpasses several retrieval and generation baselines on human evaluation. Meanwhile, we discuss potential applications (e.g., personalized recommendation and dialogue systems) of such extracted user attributes, and point out current limitations to cast light on future work.

pdf bib
Explicit Memory Tracker with Coarse-to-Fine Reasoning for Conversational Machine Reading
Yifan Gao | Chien-Sheng Wu | Shafiq Joty | Caiming Xiong | Richard Socher | Irwin King | Michael Lyu | Steven C.H. Hoi
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The goal of conversational machine reading is to answer user questions given a knowledge base text which may require asking clarification questions. Existing approaches are limited in their decision making due to struggles in extracting question-related rules and reasoning about them. In this paper, we present a new framework of conversational machine reading that comprises a novel Explicit Memory Tracker (EMT) to track whether conditions listed in the rule text have already been satisfied to make a decision. Moreover, our framework generates clarification questions by adopting a coarse-to-fine reasoning strategy, utilizing sentence-level entailment scores to weight token-level distributions. On the ShARC benchmark (blind, held-out) testset, EMT achieves new state-of-the-art results of 74.6% micro-averaged decision accuracy and 49.5 BLEU4. We also show that EMT is more interpretable by visualizing the entailment-oriented reasoning process as the conversation flows. Code and models are released at https://github.com/Yifan-Gao/explicit_memory_tracker.

pdf bib
Improving Limited Labeled Dialogue State Tracking with Self-Supervision
Chien-Sheng Wu | Steven C.H. Hoi | Caiming Xiong
Findings of the Association for Computational Linguistics: EMNLP 2020

Existing dialogue state tracking (DST) models require plenty of labeled data. However, collecting high-quality labels is costly, especially when the number of domains increases. In this paper, we address a practical DST problem that is rarely discussed, i.e., learning efficiently with limited labeled data. We present and investigate two self-supervised objectives: preserving latent consistency and modeling conversational behavior. We encourage a DST model to have consistent latent distributions given a perturbed input, making it more robust to an unseen scenario. We also add an auxiliary utterance generation task, modeling a potential correlation between conversational behavior and dialogue states. The experimental results show that our proposed self-supervised signals can improve joint goal accuracy by 8.95% when only 1% labeled data is used on the MultiWOZ dataset. We can achieve an additional 1.76% improvement if some unlabeled data is jointly trained as semi-supervised learning. We analyze and visualize how our proposed self-supervised signals help the DST task and hope to stimulate future data-efficient DST research.

pdf bib
TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented Dialogue
Chien-Sheng Wu | Steven C.H. Hoi | Richard Socher | Caiming Xiong
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The underlying difference of linguistic patterns between general text and task-oriented dialogue makes existing pre-trained language models less useful in practice. In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling. To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling. We propose a contrastive objective function to simulate the response selection task. Our pre-trained task-oriented dialogue BERT (TOD-BERT) outperforms strong baselines like BERT on four downstream task-oriented dialogue applications, including intention recognition, dialogue state tracking, dialogue act prediction, and response selection. We also show that TOD-BERT has a stronger few-shot ability that can mitigate the data scarcity problem for task-oriented dialogue.

pdf bib
Discern: Discourse-Aware Entailment Reasoning Network for Conversational Machine Reading
Yifan Gao | Chien-Sheng Wu | Jingjing Li | Shafiq Joty | Steven C.H. Hoi | Caiming Xiong | Irwin King | Michael Lyu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Document interpretation and dialog understanding are the two major challenges for conversational machine reading. In this work, we propose “Discern”, a discourse-aware entailment reasoning network to strengthen the connection and enhance the understanding of both document and dialog. Specifically, we split the document into clause-like elementary discourse units (EDU) using a pre-trained discourse segmentation model, and we train our model in a weakly-supervised manner to predict whether each EDU is entailed by the user feedback in a conversation. Based on the learned EDU and entailment representations, we either reply to the user our final decision “yes/no/irrelevant” of the initial question, or generate a follow-up question to inquiry more information. Our experiments on the ShARC benchmark (blind, held-out test set) show that Discern achieves state-of-the-art results of 78.3% macro-averaged accuracy on decision making and 64.0 BLEU1 on follow-up question generation. Code and models are released at https://github.com/Yifan-Gao/Discern.

pdf bib
Probing Task-Oriented Dialogue Representation from Language Models
Chien-Sheng Wu | Caiming Xiong
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks. We approach the problem from two aspects: supervised classifier probe and unsupervised mutual information probe. We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way. Meanwhile, we propose an unsupervised mutual information probe to evaluate the mutual dependence between a real clustering and a representation clustering. The goals of this empirical paper are to 1) investigate probing techniques, especially from the unsupervised mutual information aspect, 2) provide guidelines of pre-trained language model selection for the dialogue research community, 3) find insights of pre-training factors for dialogue application that may be the key to success.

pdf bib
Discriminative Nearest Neighbor Few-Shot Intent Detection by Transferring Natural Language Inference
Jianguo Zhang | Kazuma Hashimoto | Wenhao Liu | Chien-Sheng Wu | Yao Wan | Philip Yu | Richard Socher | Caiming Xiong
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Intent detection is one of the core components of goal-oriented dialog systems, and detecting out-of-scope (OOS) intents is also a practically important skill. Few-shot learning is attracting much attention to mitigate data scarcity, but OOS detection becomes even more challenging. In this paper, we present a simple yet effective approach, discriminative nearest neighbor classification with deep self-attention. Unlike softmax classifiers, we leverage BERT-style pairwise encoding to train a binary classifier that estimates the best matched training example for a user input. We propose to boost the discriminative ability by transferring a natural language inference (NLI) model. Our extensive experiments on a large-scale multi-domain intent detection task show that our method achieves more stable and accurate in-domain and OOS detection accuracy than RoBERTa-based classifiers and embedding-based nearest neighbor approaches. More notably, the NLI transfer enables our 10-shot model to perform competitively with 50-shot or even full-shot classifiers, while we can keep the inference time constant by leveraging a faster embedding retrieval model.

2019

pdf bib
Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems
Chien-Sheng Wu | Andrea Madotto | Ehsan Hosseini-Asl | Caiming Xiong | Richard Socher | Pascale Fung
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Over-dependence on domain ontology and lack of sharing knowledge across domains are two practical and yet less studied problems of dialogue state tracking. Existing approaches generally fall short when tracking unknown slot values during inference and often have difficulties in adapting to new domains. In this paper, we propose a Transferable Dialogue State Generator (TRADE) that generates dialogue states from utterances using copy mechanism, facilitating transfer when predicting (domain, slot, value) triplets not encountered during training. Our model is composed of an utterance encoder, a slot gate, and a state generator, which are shared across domains. Empirical results demonstrate that TRADE achieves state-of-the-art 48.62% joint goal accuracy for the five domains of MultiWOZ, a human-human dialogue dataset. In addition, we show the transferring ability by simulating zero-shot and few-shot dialogue state tracking for unseen domains. TRADE achieves 60.58% joint goal accuracy in one of the zero-shot domains, and is able to adapt to few-shot cases without forgetting already trained domains.

pdf bib
Personalizing Dialogue Agents via Meta-Learning
Andrea Madotto | Zhaojiang Lin | Chien-Sheng Wu | Pascale Fung
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Existing personalized dialogue models use human designed persona descriptions to improve dialogue consistency. Collecting such descriptions from existing dialogues is expensive and requires hand-crafted feature designs. In this paper, we propose to extend Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) to personalized dialogue learning without using any persona descriptions. Our model learns to quickly adapt to new personas by leveraging only a few dialogue samples collected from the same user, which is fundamentally different from conditioning the response on the persona descriptions. Empirical results on Persona-chat dataset (Zhang et al., 2018) indicate that our solution outperforms non-meta-learning baselines using automatic evaluation metrics, and in terms of human-evaluated fluency and consistency.

pdf bib
Code-Switched Language Models Using Neural Based Synthetic Data from Parallel Sentences
Genta Indra Winata | Andrea Madotto | Chien-Sheng Wu | Pascale Fung
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Training code-switched language models is difficult due to lack of data and complexity in the grammatical structure. Linguistic constraint theories have been used for decades to generate artificial code-switching sentences to cope with this issue. However, this require external word alignments or constituency parsers that create erroneous results on distant languages. We propose a sequence-to-sequence model using a copy mechanism to generate code-switching data by leveraging parallel monolingual translations from a limited source of code-switching data. The model learns how to combine words from parallel sentences and identifies when to switch one language to the other. Moreover, it captures code-switching constraints by attending and aligning the words in inputs, without requiring any external knowledge. Based on experimental results, the language model trained with the generated sentences achieves state-of-the-art performance and improves end-to-end automatic speech recognition.

pdf bib
Clickbait? Sensational Headline Generation with Auto-tuned Reinforcement Learning
Peng Xu | Chien-Sheng Wu | Andrea Madotto | Pascale Fung
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Sensational headlines are headlines that capture people’s attention and generate reader interest. Conventional abstractive headline generation methods, unlike human writers, do not optimize for maximal reader attention. In this paper, we propose a model that generates sensational headlines without labeled data. We first train a sensationalism scorer by classifying online headlines with many comments (“clickbait”) against a baseline of headlines generated from a summarization model. The score from the sensationalism scorer is used as the reward for a reinforcement learner. However, maximizing the noisy sensationalism reward will generate unnatural phrases instead of sensational headlines. To effectively leverage this noisy reward, we propose a novel loss function, Auto-tuned Reinforcement Learning (ARL), to dynamically balance reinforcement learning (RL) with maximum likelihood estimation (MLE). Human evaluation shows that 60.8% of samples generated by our model are sensational, which is significantly better than the Pointer-Gen baseline and other RL models.

2018

pdf bib
Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Oriented Dialog Systems
Andrea Madotto | Chien-Sheng Wu | Pascale Fung
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

End-to-end task-oriented dialog systems usually suffer from the challenge of incorporating knowledge bases. In this paper, we propose a novel yet simple end-to-end differentiable model called memory-to-sequence (Mem2Seq) to address this issue. Mem2Seq is the first neural generative model that combines the multi-hop attention over memories with the idea of pointer network. We empirically show how Mem2Seq controls each generation step, and how its multi-hop attention mechanism helps in learning correlations between memories. In addition, our model is quite general without complicated task-specific designs. As a result, we show that Mem2Seq can be trained faster and attain the state-of-the-art performance on three different task-oriented dialog datasets.

pdf bib
Code-Switching Language Modeling using Syntax-Aware Multi-Task Learning
Genta Indra Winata | Andrea Madotto | Chien-Sheng Wu | Pascale Fung
Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching

Lack of text data has been the major issue on code-switching language modeling. In this paper, we introduce multi-task learning based language model which shares syntax representation of languages to leverage linguistic information and tackle the low resource data issue. Our model jointly learns both language modeling and Part-of-Speech tagging on code-switched utterances. In this way, the model is able to identify the location of code-switching points and improves the prediction of next word. Our approach outperforms standard LSTM based language model, with an improvement of 9.7% and 7.4% in perplexity on SEAME Phase I and Phase II dataset respectively.

pdf bib
Bilingual Character Representation for Efficiently Addressing Out-of-Vocabulary Words in Code-Switching Named Entity Recognition
Genta Indra Winata | Chien-Sheng Wu | Andrea Madotto | Pascale Fung
Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching

We propose an LSTM-based model with hierarchical architecture on named entity recognition from code-switching Twitter data. Our model uses bilingual character representation and transfer learning to address out-of-vocabulary words. In order to mitigate data noise, we propose to use token replacement and normalization. In the 3rd Workshop on Computational Approaches to Linguistic Code-Switching Shared Task, we achieved second place with 62.76% harmonic mean F1-score for English-Spanish language pair without using any gazetteer and knowledge-based information.

pdf bib
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
Peng Xu | Andrea Madotto | Chien-Sheng Wu | Ji Ho Park | Pascale Fung
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

In this paper, we propose Emo2Vec which encodes emotional semantics into vectors. We train Emo2Vec by multi-task learning six different emotion-related tasks, including emotion/sentiment analysis, sarcasm classification, stress detection, abusive language classification, insult detection, and personality recognition. Our evaluation of Emo2Vec shows that it outperforms existing affect-related representations, such as Sentiment-Specific Word Embedding and DeepMoji embeddings with much smaller training corpora. When concatenated with GloVe, Emo2Vec achieves competitive performances to state-of-the-art results on several tasks using a simple logistic regression classifier.

pdf bib
Improving Large-Scale Fact-Checking using Decomposable Attention Models and Lexical Tagging
Nayeon Lee | Chien-Sheng Wu | Pascale Fung
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Fact-checking of textual sources needs to effectively extract relevant information from large knowledge bases. In this paper, we extend an existing pipeline approach to better tackle this problem. We propose a neural ranker using a decomposable attention model that dynamically selects sentences to achieve promising improvement in evidence retrieval F1 by 38.80%, with (x65) speedup compared to a TF-IDF method. Moreover, we incorporate lexical tagging methods into our pipeline framework to simplify the tasks and render the model more generalizable. As a result, our framework achieves promising performance on a large-scale fact extraction and verification dataset with speedup.

2016

pdf bib
Real-Time Speech Emotion and Sentiment Recognition for Interactive Dialogue Systems
Dario Bertero | Farhad Bin Siddique | Chien-Sheng Wu | Yan Wan | Ricky Ho Yin Chan | Pascale Fung
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Zara: A Virtual Interactive Dialogue System Incorporating Emotion, Sentiment and Personality Recognition
Pascale Fung | Anik Dey | Farhad Bin Siddique | Ruixi Lin | Yang Yang | Dario Bertero | Yan Wan | Ricky Ho Yin Chan | Chien-Sheng Wu
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations

Zara, or ‘Zara the Supergirl’ is a virtual robot, that can exhibit empathy while interacting with an user, with the aid of its built in facial and emotion recognition, sentiment analysis, and speech module. At the end of the 5-10 minute conversation, Zara can give a personality analysis of the user based on all the user utterances. We have also implemented a real-time emotion recognition, using a CNN model that detects emotion from raw audio without feature extraction, and have achieved an average of 65.7% accuracy on six different emotion classes, which is an impressive 4.5% improvement from the conventional feature based SVM classification. Also, we have described a CNN based sentiment analysis module trained using out-of-domain data, that recognizes sentiment from the speech recognition transcript, which has a 74.8 F-measure when tested on human-machine dialogues.