Chinonso Cynthia Osuji


2024

pdf bib
Pipeline Neural Data-to-text with Large Language Models
Chinonso Cynthia Osuji | Brian Timoney | Thiago Castro Ferreira | Brian Davis
Proceedings of the 17th International Natural Language Generation Conference

Previous studies have highlighted the advantages of pipeline neural architectures over end-to-end models, particularly in reducing text hallucination. In this study, we extend prior research by integrating pretrained language models (PLMs) into a pipeline framework, using both fine-tuning and prompting methods. Our findings show that fine-tuned PLMs consistently generate high quality text, especially within end-to-end architectures and at intermediate stages of the pipeline across various domains. These models also outperform prompt-based ones on automatic evaluation metrics but lag in human evaluations. Compared to the standard five-stage pipeline architecture, a streamlined three-stage pipeline, which only include ordering, structuring, and surface realization, achieves superior performance in fluency and semantic adequacy according to the human evaluation.

pdf bib
DCU-ADAPT-modPB at the GEM’24 Data-to-Text Generation Task: Model Hybridisation for Pipeline Data-to-Text Natural Language Generation
Chinonso Cynthia Osuji | Rudali Huidrom | Kolawole John Adebayo | Thiago Castro Ferreira | Brian Davis
Proceedings of the 17th International Natural Language Generation Conference: Generation Challenges

In this paper, we present our approach to the GEM Shared Task at the INLG’24 Generation Challenges, which focuses on generating data-to-text in multiple languages, including low-resource languages, from WebNLG triples. We employ a combination of end-to-end and pipeline neural architectures for English text generation. To extend our methodology to Hindi, Korean, Arabic, and Swahili, we leverage a neural machine translation model. Our results demonstrate that our approach achieves competitive performance in the given task.