2024
pdf
bib
abs
S3-DST: Structured Open-Domain Dialogue Segmentation and State Tracking in the Era of LLMs
Sarkar Snigdha Sarathi Das
|
Chirag Shah
|
Mengting Wan
|
Jennifer Neville
|
Longqi Yang
|
Reid Andersen
|
Georg Buscher
|
Tara Safavi
Findings of the Association for Computational Linguistics: ACL 2024
Traditional Dialogue State Tracking (DST) has focused on tracking preferences and intents in conversations centered around specific tasks (e.g. booking services). These conventional systems assume a relatively restricted conversation flow in which each turn gradually offers new information. However, advancements in Large Language Models (LLMs) have ushered in more versatile open-domain chat systems in which extended dialogue sessions encompassing numerous tasks and topics are common—in turn requiring new conversational tracking tools in order to successfully orchestrate such systems. Addressing these challenges, we introduce a novel approach combining dialogue segmentation and state tracking within open-domain dialogues, tailored for zero-shot applications appropriate to a true open-domain dialogue system. Our proposed method S3-DST employs a unique structured prompting technique and *Pre-Analytical Recollection*, a novel grounding mechanism we designed for improving long context tracking. Tested on proprietary anonymized open-domain dialogue datasets as well as publicly available DST and segmentation datasets, S3-DST consistently outperforms the state-of-the-art, showcasing its effectiveness and adaptability state tracking in the next wave of LLM-based chat systems. We also release S3-DST annotations with GPT-4 on a curated subset of LMSYS-Chat-1M to be used as a testbed to fuel research in this direction.
pdf
bib
abs
ClaimVer: Explainable Claim-Level Verification and Evidence Attribution of Text Through Knowledge Graphs
Preetam Prabhu Srikar Dammu
|
Himanshu Naidu
|
Mouly Dewan
|
YoungMin Kim
|
Tanya Roosta
|
Aman Chadha
|
Chirag Shah
Findings of the Association for Computational Linguistics: EMNLP 2024
In the midst of widespread misinformation and disinformation through social media and the proliferation of AI-generated texts, it has become increasingly difficult for people to validate and trust information they encounter. Many fact-checking approaches and tools have been developed, but they often lack appropriate explainability or granularity to be useful in various contexts. A text validation method that is easy to use, accessible, and can perform fine-grained evidence attribution has become crucial. More importantly, building user trust in such a method requires presenting the rationale behind each prediction, as research shows this significantly influences people’s belief in automated systems. Localizing and bringing users’ attention to the specific problematic content is also paramount, instead of providing simple blanket labels. In this paper, we present ClaimVer, a human-centric framework tailored to meet users’ informational and verification needs by generating rich annotations and thereby reducing cognitive load. Designed to deliver comprehensive evaluations of texts, it highlights each claim, verifies it against a trusted knowledge graph (KG), presents the evidence, and provides succinct, clear explanations for each claim prediction. Finally, our framework introduces an attribution score, enhancing applicability across a wide range of downstream tasks.
2009
pdf
bib
Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Student Research Workshop and Doctoral Consortium
Ulrich Germann
|
Chirag Shah
|
Svetlana Stoyanchev
|
Carolyn Penstein Rosé
|
Anoop Sarkar
Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Student Research Workshop and Doctoral Consortium