Chiwei Zhu


2023

pdf bib
Grammatical Error Correction via Mixed-Grained Weighted Training
Jiahao Li | Quan Wang | Chiwei Zhu | Zhendong Mao | Yongdong Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023

The task of Grammatical Error Correction (GEC) aims to automatically correct grammatical errors in natural texts. Almost all previous works treat annotated training data equally, but inherent discrepancies in data are neglected. In this paper, the inherent discrepancies are manifested in two aspects, namely, accuracy of data annotation and diversity of potential annotations. To this end, we propose MainGEC, which designs token-level and sentence-level training weights based on inherent discrepancies therein, and then conducts mixed-grained weighted training to improve the training effect for GEC. Empirical evaluation shows that whether in the Seq2Seq or Seq2Edit manner, MainGEC achieves consistent and significant performance improvements on two benchmark datasets, demonstrating the effectiveness and superiority of the mixed-grained weighted training. Further ablation experiments verify the effectiveness of designed weights for both granularities in MainGEC.

pdf bib
On the Calibration of Large Language Models and Alignment
Chiwei Zhu | Benfeng Xu | Quan Wang | Yongdong Zhang | Zhendong Mao
Findings of the Association for Computational Linguistics: EMNLP 2023

As large language models attract increasing attention and find widespread application, concurrent challenges of reliability also arise at the same time. Confidence calibration, an effective analysis method for gauging the reliability of deep models, serves as a crucial tool for assessing and improving their reliability. However, such investigation has been comparatively underexplored. In this work, we conduct a systematic examination of the calibration of aligned language models throughout the entire construction process, including pretraining and alignment training. At each stage, we investigate how different training settings, such as parameter scales and training data, affect model calibration. To thoroughly assess model calibration, we evaluate models on three most concerned aspects: generation, factuality and understanding. Our work sheds light on whether popular LLMs are well-calibrated and how the training process influences model calibration.