Modeling and leveraging layout reading order in visually-rich documents (VrDs) is critical in document intelligence as it captures the rich structure semantics within documents.Previous works typically formulated layout reading order as a permutation of layout elements, i.e. a sequence containing all the layout elements.However, we argue that this formulation does not adequately convey the complete reading order information in the layout, which may potentially lead to performance decline in downstream tasks.To address this issue, we propose to model the layout reading order as ordering relations over the set of layout elements, which have sufficient expressive capability for the complete reading order information. To enable empirical evaluation on methods towards the improved form of reading order prediction (ROP), we establish a comprehensive benchmark dataset including the reading order annotation as relations over layout elements, together with a relation-extraction-based method that outperforms previous models. Moreover, we propose a reading-order-relation-enhancing pipeline to improve model performance on any arbitrary VrD task by introducing additional reading order relation inputs.We conduct comprehensive experiments to demonstrate that the pipeline generally benefits downstream VrD tasks:(1) with utilizing the reading order relation information, the enhanced downstream models achieve SOTA results on both two task settings of the targeted dataset; (2) with utilizing the pseudo reading order information generated by the proposed ROP model, the performance of the enhanced models has improved across all three models and eight cross-domain VrD-IE/QA task settings without targeted optimization.
In many PDF documents, the reading order of text blocks is missing, which can hinder machine understanding of the document’s content.Existing works try to extract one universal reading order for a PDF file.However, applications, like Retrieval Augmented Generation (RAG), require breaking long articles into sections and subsections for better indexing.For this reason, this paper introduces a new task and dataset, PDF-to-Tree, which organizes the text blocks of a PDF into a tree structure.Since a PDF may contain thousands of text blocks, far exceeding the number of words in a sentence, this paper proposes a transition-based parser that uses a greedy strategy to build the tree structure.Compared to parser for plain text, we also use multi-modal features to encode the parser state.Experiments show that our approach achieves an accuracy of 93.93%, surpassing the performance of baseline methods by an improvement of 6.72%.
Hierarchical text classification (HTC) is a challenging subtask of multi-label classification as the labels form a complex hierarchical structure. Existing dual-encoder methods in HTC achieve weak performance gains with huge memory overheads and their structure encoders heavily rely on domain knowledge. Under such observation, we tend to investigate the feasibility of a memory-friendly model with strong generalization capability that could boost the performance of HTC without prior statistics or label semantics. In this paper, we propose Hierarchy-aware Tree Isomorphism Network (HiTIN) to enhance the text representations with only syntactic information of the label hierarchy. Specifically, we convert the label hierarchy into an unweighted tree structure, termed coding tree, with the guidance of structural entropy. Then we design a structure encoder to incorporate hierarchy-aware information in the coding tree into text representations. Besides the text encoder, HiTIN only contains a few multi-layer perceptions and linear transformations, which greatly saves memory. We conduct experiments on three commonly used datasets and the results demonstrate that HiTIN could achieve better test performance and less memory consumption than state-of-the-art (SOTA) methods.
Prior studies diagnose the anisotropy problem in sentence representations from pre-trained language models, e.g., BERT, without fine-tuning. Our analysis reveals that the sentence embeddings from BERT suffer from a bias towards uninformative words, limiting the performance in semantic textual similarity (STS) tasks. To address this bias, we propose a simple and efficient unsupervised approach, Diagonal Attention Pooling (Ditto), which weights words with model-based importance estimations and computes the weighted average of word representations from pre-trained models as sentence embeddings. Ditto can be easily applied to any pre-trained language model as a postprocessing operation. Compared to prior sentence embedding approaches, Ditto does not add parameters nor requires any learning. Empirical evaluations demonstrate that our proposed Ditto can alleviate the anisotropy problem and improve various pre-trained models on the STS benchmarks.
Recent advances in multimodal pre-trained models have significantly improved information extraction from visually-rich documents (VrDs), in which named entity recognition (NER) is treated as a sequence-labeling task of predicting the BIO entity tags for tokens, following the typical setting of NLP. However, BIO-tagging scheme relies on the correct order of model inputs, which is not guaranteed in real-world NER on scanned VrDs where text are recognized and arranged by OCR systems. Such reading order issue hinders the accurate marking of entities by BIO-tagging scheme, making it impossible for sequence-labeling methods to predict correct named entities. To address the reading order issue, we introduce Token Path Prediction (TPP), a simple prediction head to predict entity mentions as token sequences within documents. Alternative to token classification, TPP models the document layout as a complete directed graph of tokens, and predicts token paths within the graph as entities. For better evaluation of VrD-NER systems, we also propose two revised benchmark datasets of NER on scanned documents which can reflect real-world scenarios. Experiment results demonstrate the effectiveness of our method, and suggest its potential to be a universal solution to various information extraction tasks on documents.
Text classification is a primary task in natural language processing (NLP). Recently, graph neural networks (GNNs) have developed rapidly and been applied to text classification tasks. As a special kind of graph data, the tree has a simpler data structure and can provide rich hierarchical information for text classification. Inspired by the structural entropy, we construct the coding tree of the graph by minimizing the structural entropy and propose HINT, which aims to make full use of the hierarchical information contained in the text for the task of text classification. Specifically, we first establish a dependency parsing graph for each text. Then we designed a structural entropy minimization algorithm to decode the key information in the graph and convert each graph to its corresponding coding tree. Based on the hierarchical structure of the coding tree, the representation of the entire graph is obtained by updating the representation of non-leaf nodes in the coding tree layer by layer. Finally, we present the effectiveness of hierarchical information in text classification. Experimental results show that HINT outperforms the state-of-the-art methods on popular benchmarks while having a simple structure and few parameters.
TextFlint is a multilingual robustness evaluation toolkit for NLP tasks that incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analyses. This enables practitioners to automatically evaluate their models from various aspects or to customize their evaluations as desired with just a few lines of code. TextFlint also generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model in terms of its robustness. To guarantee acceptability, all the text transformations are linguistically based and all the transformed data selected (up to 100,000 texts) scored highly under human evaluation. To validate the utility, we performed large-scale empirical evaluations (over 67,000) on state-of-the-art deep learning models, classic supervised methods, and real-world systems. The toolkit is already available at https://github.com/textflint with all the evaluation results demonstrated at textflint.io.
Robustness and counterfactual bias are usually evaluated on a test dataset. However, are these evaluations robust? If the test dataset is perturbed slightly, will the evaluation results keep the same? In this paper, we propose a “double perturbation” framework to uncover model weaknesses beyond the test dataset. The framework first perturbs the test dataset to construct abundant natural sentences similar to the test data, and then diagnoses the prediction change regarding a single-word substitution. We apply this framework to study two perturbation-based approaches that are used to analyze models’ robustness and counterfactual bias in English. (1) For robustness, we focus on synonym substitutions and identify vulnerable examples where prediction can be altered. Our proposed attack attains high success rates (96.0%-99.8%) in finding vulnerable examples on both original and robustly trained CNNs and Transformers. (2) For counterfactual bias, we focus on substituting demographic tokens (e.g., gender, race) and measure the shift of the expected prediction among constructed sentences. Our method is able to reveal the hidden model biases not directly shown in the test dataset. Our code is available at https://github.com/chong-z/nlp-second-order-attack.
In joint entity and relation extraction, existing work either sequentially encode task-specific features, leading to an imbalance in inter-task feature interaction where features extracted later have no direct contact with those that come first. Or they encode entity features and relation features in a parallel manner, meaning that feature representation learning for each task is largely independent of each other except for input sharing. We propose a partition filter network to model two-way interaction between tasks properly, where feature encoding is decomposed into two steps: partition and filter. In our encoder, we leverage two gates: entity and relation gate, to segment neurons into two task partitions and one shared partition. The shared partition represents inter-task information valuable to both tasks and is evenly shared across two tasks to ensure proper two-way interaction. The task partitions represent intra-task information and are formed through concerted efforts of both gates, making sure that encoding of task-specific features is dependent upon each other. Experiment results on six public datasets show that our model performs significantly better than previous approaches. In addition, contrary to what previous work has claimed, our auxiliary experiments suggest that relation prediction is contributory to named entity prediction in a non-negligible way. The source code can be found at https://github.com/Coopercoppers/PFN.
Aspect-based sentiment analysis aims to identify the sentiment polarity of a specific aspect in product reviews. We notice that about 30% of reviews do not contain obvious opinion words, but still convey clear human-aware sentiment orientation, which is known as implicit sentiment. However, recent neural network-based approaches paid little attention to implicit sentiment entailed in the reviews. To overcome this issue, we adopt Supervised Contrastive Pre-training on large-scale sentiment-annotated corpora retrieved from in-domain language resources. By aligning the representation of implicit sentiment expressions to those with the same sentiment label, the pre-training process leads to better capture of both implicit and explicit sentiment orientation towards aspects in reviews. Experimental results show that our method achieves state-of-the-art performance on SemEval2014 benchmarks, and comprehensive analysis validates its effectiveness on learning implicit sentiment.
Claims database and electronic health records database do not usually capture kinship or family relationship information, which is imperative for genetic research. We identify online obituaries as a new data source and propose a special named entity recognition and relation extraction solution to extract names and kinships from online obituaries. Built on 1,809 annotated obituaries and a novel tagging scheme, our joint neural model achieved macro-averaged precision, recall and F measure of 72.69%, 78.54% and 74.93%, and micro-averaged precision, recall and F measure of 95.74%, 98.25% and 96.98% using 57 kinships with 10 or more examples in a 10-fold cross-validation experiment. The model performance improved dramatically when trained with 34 kinships with 50 or more examples. Leveraging additional information such as age, death date, birth date and residence mentioned by obituaries, we foresee a promising future of supplementing EHR databases with comprehensive and accurate kinship information for genetic research.