Chongyang Gao


2024

pdf bib
AlphaLoRA: Assigning LoRA Experts Based on Layer Training Quality
Peijun Qing | Chongyang Gao | Yefan Zhou | Xingjian Diao | Yaoqing Yang | Soroush Vosoughi
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA), are known to enhance training efficiency in Large Language Models (LLMs). Due to the limited parameters of LoRA, recent studies seek to combine LoRA with Mixture-of-Experts (MoE) to boost performance across various tasks. However, inspired by the observed redundancy in traditional MoE structures, prior studies find that LoRA experts within the MoE architecture also exhibit redundancy, suggesting a need to vary the allocation of LoRA experts across different layers. In this paper, we leverage Heavy-Tailed Self-Regularization (HT-SR) Theory to design a fine-grained allocation strategy. Our analysis reveals that the number of experts per layer correlates with layer training quality, which exhibits significant variability across layers. Based on this, we introduce AlphaLoRA, a theoretically principled and training-free method for allocating LoRA experts to reduce redundancy further. Experiments on three models across ten language processing and reasoning benchmarks demonstrate that AlphaLoRA achieves comparable or superior performance over all baselines. Our code is available at https://github.com/morelife2017/alphalora.

pdf bib
Semantic-Preserving Adversarial Example Attack against BERT
Chongyang Gao | Kang Gu | Soroush Vosoughi | Shagufta Mehnaz
Proceedings of the 4th Workshop on Trustworthy Natural Language Processing (TrustNLP 2024)

Adversarial example attacks against textual data have been drawing increasing attention in both the natural language processing (NLP) and security domains. However, most of the existing attacks overlook the importance of semantic similarity and yield easily recognizable adversarial samples. As a result, the defense methods developed in response to these attacks remain vulnerable and could be evaded by advanced adversarial examples that maintain high semantic similarity with the original, non-adversarial text. Hence, this paper aims to investigate the extent of textual adversarial examples in maintaining such high semantic similarity. We propose Reinforce attack, a reinforcement learning-based framework to generate adversarial text that preserves high semantic similarity with the original text. In particular, the attack process is controlled by a reward function rather than heuristics, as in previous methods, to encourage higher semantic similarity and lower query costs. Through automatic and human evaluations, we show that our generated adversarial texts preserve significantly higher semantic similarity than state-of-the-art attacks while achieving similar attack success rates (outperforming at times), thus uncovering novel challenges for effective defenses.

2022

pdf bib
Embedding Hallucination for Few-shot Language Fine-tuning
Yiren Jian | Chongyang Gao | Soroush Vosoughi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Few-shot language learners adapt knowledge from a pre-trained model to recognize novel classes from a few-labeled sentences. In such settings, fine-tuning a pre-trained language model can cause severe over-fitting. In this paper, we propose an Embedding Hallucination (EmbedHalluc) method, which generates auxiliary embedding-label pairs to expand the fine-tuning dataset. The hallucinator is trained by playing an adversarial game with the discriminator, such that the hallucinated embedding is indiscriminative to the real ones in the fine-tuning dataset. By training with the extended dataset, the language learner effectively learns from the diverse hallucinated embeddings to overcome the over-fitting issue. Experiments demonstrate that our proposed method is effective in a wide range of language tasks, outperforming current fine-tuning methods. Further, we show that EmbedHalluc outperforms other methods that address this over-fitting problem, such as common data augmentation, semi-supervised pseudo-labeling, and regularization.

pdf bib
Contrastive Learning for Prompt-based Few-shot Language Learners
Yiren Jian | Chongyang Gao | Soroush Vosoughi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The impressive performance of GPT-3 using natural language prompts and in-context learning has inspired work on better fine-tuning of moderately-sized models under this paradigm. Following this line of work, we present a contrastive learning framework that clusters inputs from the same class for better generality of models trained with only limited examples. Specifically, we propose a supervised contrastive framework that clusters inputs from the same class under different augmented “views” and repel the ones from different classes. We create different “views” of an example by appending it with different language prompts and contextual demonstrations. Combining a contrastive loss with the standard masked language modeling (MLM) loss in prompt-based few-shot learners, the experimental results show that our method can improve over the state-of-the-art methods in a diverse set of 15 language tasks. Our framework makes minimal assumptions on the task or the base model, and can be applied to many recent methods with little modification.

2020

pdf bib
An Empirical Survey of Unsupervised Text Representation Methods on Twitter Data
Lili Wang | Chongyang Gao | Jason Wei | Weicheng Ma | Ruibo Liu | Soroush Vosoughi
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

The field of NLP has seen unprecedented achievements in recent years. Most notably, with the advent of large-scale pre-trained Transformer-based language models, such as BERT, there has been a noticeable improvement in text representation. It is, however, unclear whether these improvements translate to noisy user-generated text, such as tweets. In this paper, we present an experimental survey of a wide range of well-known text representation techniques for the task of text clustering on noisy Twitter data. Our results indicate that the more advanced models do not necessarily work best on tweets and that more exploration in this area is needed.