Chris Emezue


2024

pdf bib
AccentFold: A Journey through African Accents for Zero-Shot ASR Adaptation to Target Accents
Abraham Owodunni | Aditya Yadavalli | Chris Emezue | Tobi Olatunji | Clinton Mbataku
Findings of the Association for Computational Linguistics: EACL 2024

Despite advancements in speech recognition, accented speech remains challenging. While previous approaches have focused on modeling techniques or creating accented speech datasets, gathering sufficient data for the multitude of accents, particularly in the African context, remains impractical due to their sheer diversity and associated budget constraints. To address these challenges, we propose AccentFold, a method that exploits spatial relationships between learned accent embeddings to improve downstream Automatic Speech Recognition (ASR). Our exploratory analysis of speech embeddings representing 100+ African accents reveals interesting spatial accent relationships highlighting geographic and genealogical similarities, capturing consistent phonological, and morphological regularities, all learned empirically from speech. Furthermore, we discover accent relationships previously uncharacterized by the Ethnologue. Through empirical evaluation, we demonstrate the effectiveness of AccentFold by showing that, for out-of-distribution (OOD) accents, sampling accent subsets for training based on AccentFold information outperforms strong baselines a relative WER improvement of 4.6%. AccentFold presents a promising approach for improving ASR performance on accented speech, particularly in the context of African accents, where data scarcity and budget constraints pose significant challenges. Our findings emphasize the potential of leveraging linguistic relationships to improve zero-shot ASR adaptation to target accents.

2023

pdf bib
Cross-lingual Open-Retrieval Question Answering for African Languages
Odunayo Ogundepo | Tajuddeen Gwadabe | Clara Rivera | Jonathan Clark | Sebastian Ruder | David Adelani | Bonaventure Dossou | Abdou Diop | Claytone Sikasote | Gilles Hacheme | Happy Buzaaba | Ignatius Ezeani | Rooweither Mabuya | Salomey Osei | Chris Emezue | Albert Kahira | Shamsuddeen Muhammad | Akintunde Oladipo | Abraham Owodunni | Atnafu Tonja | Iyanuoluwa Shode | Akari Asai | Anuoluwapo Aremu | Ayodele Awokoya | Bernard Opoku | Chiamaka Chukwuneke | Christine Mwase | Clemencia Siro | Stephen Arthur | Tunde Ajayi | Verrah Otiende | Andre Rubungo | Boyd Sinkala | Daniel Ajisafe | Emeka Onwuegbuzia | Falalu Lawan | Ibrahim Ahmad | Jesujoba Alabi | Chinedu Mbonu | Mofetoluwa Adeyemi | Mofya Phiri | Orevaoghene Ahia | Ruqayya Iro | Sonia Adhiambo
Findings of the Association for Computational Linguistics: EMNLP 2023

African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems – those that retrieve answer content from other languages while serving people in their native language—offer a means of filling this gap. To this end, we create Our Dataset, the first cross-lingual QA dataset with a focus on African languages. Our Dataset includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, Our Dataset focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, Our Dataset proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.

pdf bib
Findings from the Bambara - French Machine Translation Competition (BFMT 2023)
Ninoh Agostinho Da Silva | Tunde Oluwaseyi Ajayi | Alexander Antonov | Panga Azazia Kamate | Moussa Coulibaly | Mason Del Rio | Yacouba Diarra | Sebastian Diarra | Chris Emezue | Joel Hamilcaro | Christopher M. Homan | Alexander Most | Joseph Mwatukange | Peter Ohue | Michael Pham | Abdoulaye Sako | Sokhar Samb | Yaya Sy | Tharindu Cyril Weerasooriya | Yacine Zahidi | Sarah Luger
Proceedings of the Sixth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2023)

Orange Silicon Valley hosted a low-resource machine translation (MT) competition with monetary prizes. The goals of the competition were to raise awareness of the challenges in the low-resource MT domain, improve MT algorithms and data strategies, and support MT expertise development in the regions where people speak Bambara and other low-resource languages. The participants built Bambara to French and French to Bambara machine translation systems using data provided by the organizers and additional data resources shared amongst the competitors. This paper details each team’s different approaches and motivation for ongoing work in Bambara and the broader low-resource machine translation domain.

pdf bib
Findings of the 1st Shared Task on Multi-lingual Multi-task Information Retrieval at MRL 2023
Francesco Tinner | David Ifeoluwa Adelani | Chris Emezue | Mammad Hajili | Omer Goldman | Muhammad Farid Adilazuarda | Muhammad Dehan Al Kautsar | Aziza Mirsaidova | Müge Kural | Dylan Massey | Chiamaka Chukwuneke | Chinedu Mbonu | Damilola Oluwaseun Oloyede | Kayode Olaleye | Jonathan Atala | Benjamin A. Ajibade | Saksham Bassi | Rahul Aralikatte | Najoung Kim | Duygu Ataman
Proceedings of the 3rd Workshop on Multi-lingual Representation Learning (MRL)

2022

pdf bib
A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation
David Adelani | Jesujoba Alabi | Angela Fan | Julia Kreutzer | Xiaoyu Shen | Machel Reid | Dana Ruiter | Dietrich Klakow | Peter Nabende | Ernie Chang | Tajuddeen Gwadabe | Freshia Sackey | Bonaventure F. P. Dossou | Chris Emezue | Colin Leong | Michael Beukman | Shamsuddeen Muhammad | Guyo Jarso | Oreen Yousuf | Andre Niyongabo Rubungo | Gilles Hacheme | Eric Peter Wairagala | Muhammad Umair Nasir | Benjamin Ajibade | Tunde Ajayi | Yvonne Gitau | Jade Abbott | Mohamed Ahmed | Millicent Ochieng | Anuoluwapo Aremu | Perez Ogayo | Jonathan Mukiibi | Fatoumata Ouoba Kabore | Godson Kalipe | Derguene Mbaye | Allahsera Auguste Tapo | Victoire Memdjokam Koagne | Edwin Munkoh-Buabeng | Valencia Wagner | Idris Abdulmumin | Ayodele Awokoya | Happy Buzaaba | Blessing Sibanda | Andiswa Bukula | Sam Manthalu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent advances in the pre-training for language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages that are not well represented on the web and therefore excluded from the large-scale crawls for datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pretraining? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a novel African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both additional languages and additional domains is to leverage small quantities of high-quality translation data to fine-tune large pre-trained models.

pdf bib
AfroLM: A Self-Active Learning-based Multilingual Pretrained Language Model for 23 African Languages
Bonaventure F. P. Dossou | Atnafu Lambebo Tonja | Oreen Yousuf | Salomey Osei | Abigail Oppong | Iyanuoluwa Shode | Oluwabusayo Olufunke Awoyomi | Chris Emezue
Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)

In recent years, multilingual pre-trained language models have gained prominence due to their remarkable performance on numerous downstream Natural Language Processing tasks (NLP). However, pre-training these large multilingual language models requires a lot of training data, which is not available for African Languages. Active learning is a semi-supervised learning algorithm, in which a model consistently and dynamically learns to identify the most beneficial samples to train itself on, in order to achieve better optimization and performance on downstream tasks. Furthermore, active learning effectively and practically addresses real-world data scarcity. Despite all its benefits, active learning, in the context of NLP and especially multilingual language models pretraining, has received little consideration. In this paper, we present AfroLM, a multilingual language model pretrained from scratch on 23 African languages (the largest effort to date) using our novel self-active learning framework. Pretrained on a dataset significantly (14x) smaller than existing baselines, AfroLM outperforms many multilingual pretrained language models (AfriBERTa, XLMR-base, mBERT) on various NLP downstream tasks (NER, text classification, and sentiment analysis). Additional out-of-domain sentiment analysis experiments show that AfroLM is able to generalize well across various domains. We release the code source, and our datasets used in our framework at https://github.com/bonaventuredossou/MLM_AL.
Search
Co-authors
Venues