Chris Kennedy


2022

pdf bib
Targeted Identity Group Prediction in Hate Speech Corpora
Pratik Sachdeva | Renata Barreto | Claudia Von Vacano | Chris Kennedy
Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)

The past decade has seen an abundance of work seeking to detect, characterize, and measure online hate speech. A related, but less studied problem, is the detection of identity groups targeted by that hate speech. Predictive accuracy on this task can supplement additional analyses beyond hate speech detection, motivating its study. Using the Measuring Hate Speech corpus, which provided annotations for targeted identity groups, we created neural network models to perform multi-label binary prediction of identity groups targeted by a comment. Specifically, we studied 8 broad identity groups and 12 identity sub-groups within race and gender identity. We found that these networks exhibited good predictive performance, achieving ROC AUCs of greater than 0.9 and PR AUCs of greater than 0.7 on several identity groups. We validated their performance on HateCheck and Gab Hate Corpora, finding that predictive performance generalized in most settings. We additionally examined the performance of the model on comments targeting multiple identity groups. Our results demonstrate the feasibility of simultaneously identifying targeted groups in social media comments.

pdf bib
The Measuring Hate Speech Corpus: Leveraging Rasch Measurement Theory for Data Perspectivism
Pratik Sachdeva | Renata Barreto | Geoff Bacon | Alexander Sahn | Claudia von Vacano | Chris Kennedy
Proceedings of the 1st Workshop on Perspectivist Approaches to NLP @LREC2022

We introduce the Measuring Hate Speech corpus, a dataset created to measure hate speech while adjusting for annotators’ perspectives. It consists of 50,070 social media comments spanning YouTube, Reddit, and Twitter, labeled by 11,143 annotators recruited from Amazon Mechanical Turk. Each observation includes 10 ordinal labels: sentiment, disrespect, insult, attacking/defending, humiliation, inferior/superior status, dehumanization, violence, genocide, and a 3-valued hate speech benchmark label. The labels are aggregated using faceted Rasch measurement theory (RMT) into a continuous score that measures each comment’s location on a hate speech spectrum. The annotation experimental design assigned comments to multiple annotators in order to yield a linked network, allowing annotator disagreement (perspective) to be statistically summarized. Annotators’ labeling strictness was estimated during the RMT scaling, projecting their perspective onto a linear measure that was adjusted for the hate speech score. Models that incorporate this annotator perspective parameter as an auxiliary input can generate label- and score-level predictions conditional on annotator perspective. The corpus includes the identity group targets of each comment (8 groups, 42 subgroups) and annotator demographics (6 groups, 40 subgroups), facilitating analyses of interactions between annotator- and comment-level identities, i.e. identity-related annotator perspective.