On May 25th, 2020, a viral eleven-minute clip showing the murder of George Floyd sparked international outrage and solidarity, leading to the digital memorial event Blackout Tuesday on Instagram. We analyzed posts to compare Blackout Tuesday discourse with #blacklivesmatter movement conversations. Using topic modeling, we identified dominant themes and counter-narratives in Blackout Tuesday and #blacklivesmatter captions. Using hashtag co-occurrence analysis, we investigatehashtag networks to situate the discourses within spheres of Instagram activism. Our findings indicate that both corpora share themes like “calls to action”, but Blackout Tuesday posts are shorter and solidarity-focused, while #blacklivesmatter posts are longer and address white privilege more explicitly. #blacklivesmatter is linked to anti-racist activism hashtags, while Blackout Tuesday connects more with popular culture and #Alllivesmatter. This supports qualitative research on Blackout Tuesday’s performative allyship, adding a quantitative perspective to the field.
This study investigates the automated classification of Calls to Action (CTAs) within the 2021 German Instagram election campaign to advance the understanding of mobilization in social media contexts. We analyzed over 2,208 Instagram stories and 712 posts using fine-tuned BERT models and OpenAI’s GPT-4 models. The fine-tuned BERT model incorporating synthetic training data achieved a macro F1 score of 0.93, demonstrating a robust classification performance. Our analysis revealed that 49.58% of Instagram posts and 10.64% of stories contained CTAs, highlighting significant differences in mobilization strategies between these content types. Additionally, we found that FDP and the Greens had the highest prevalence of CTAs in posts, whereas CDU and CSU led in story CTAs.
We present results of a project on emotion classification on historical German plays of Enlightenment, Storm and Stress, and German Classicism. We have developed a hierarchical annotation scheme consisting of 13 sub-emotions like suffering, love and joy that sum up to 6 main and 2 polarity classes (positive/negative). We have conducted textual annotations on 11 German plays and have acquired over 13,000 emotion annotations by two annotators per play. We have evaluated multiple traditional machine learning approaches as well as transformer-based models pretrained on historical and contemporary language for a single-label text sequence emotion classification for the different emotion categories. The evaluation is carried out on three different instances of the corpus: (1) taking all annotations, (2) filtering overlapping annotations by annotators, (3) applying a heuristic for speech-based analysis. Best results are achieved on the filtered corpus with the best models being large transformer-based models pretrained on contemporary German language. For the polarity classification accuracies of up to 90% are achieved. The accuracies become lower for settings with a higher number of classes, achieving 66% for 13 sub-emotions. Further pretraining of a historical model with a corpus of dramatic texts led to no improvements.
Data acquisition in dialectology is typically a tedious task, as dialect samples of spoken language have to be collected via questionnaires or interviews. In this article, we suggest to use the “web as a corpus” approach for dialectology. We present a case study that demonstrates how authentic language data for the Bavarian dialect (ISO 639-3:bar) can be collected automatically from the social network Facebook. We also show that Facebook can be used effectively as a crowdsourcing platform, where users are willing to translate dialect words collaboratively in order to create a common lexicon of their Bavarian dialect. Key insights from the case study are summarized as “lessons learned”, together with suggestions for future enhancements of the lexicon creation approach.