Chrysoula Zerva


2022

pdf bib
Learning Disentangled Representations of Negation and Uncertainty
Jake Vasilakes | Chrysoula Zerva | Makoto Miwa | Sophia Ananiadou
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Negation and uncertainty modeling are long-standing tasks in natural language processing. Linguistic theory postulates that expressions of negation and uncertainty are semantically independent from each other and the content they modify. However, previous works on representation learning do not explicitly model this independence. We therefore attempt to disentangle the representations of negation, uncertainty, and content using a Variational Autoencoder. We find that simply supervising the latent representations results in good disentanglement, but auxiliary objectives based on adversarial learning and mutual information minimization can provide additional disentanglement gains.

pdf bib
DeepSPIN: Deep Structured Prediction for Natural Language Processing
André F. T. Martins | Ben Peters | Chrysoula Zerva | Chunchuan Lyu | Gonçalo Correia | Marcos Treviso | Pedro Martins | Tsvetomila Mihaylova
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation

DeepSPIN is a research project funded by the European Research Council (ERC) whose goal is to develop new neural structured prediction methods, models, and algorithms for improving the quality, interpretability, and data-efficiency of natural language processing (NLP) systems, with special emphasis on machine translation and quality estimation. We describe in this paper the latest findings from this project.

2021

pdf bib
Findings of the WMT 2021 Shared Task on Quality Estimation
Lucia Specia | Frédéric Blain | Marina Fomicheva | Chrysoula Zerva | Zhenhao Li | Vishrav Chaudhary | André F. T. Martins
Proceedings of the Sixth Conference on Machine Translation

We report the results of the WMT 2021 shared task on Quality Estimation, where the challenge is to predict the quality of the output of neural machine translation systems at the word and sentence levels. This edition focused on two main novel additions: (i) prediction for unseen languages, i.e. zero-shot settings, and (ii) prediction of sentences with catastrophic errors. In addition, new data was released for a number of languages, especially post-edited data. Participating teams from 19 institutions submitted altogether 1263 systems to different task variants and language pairs.

pdf bib
IST-Unbabel 2021 Submission for the Quality Estimation Shared Task
Chrysoula Zerva | Daan van Stigt | Ricardo Rei | Ana C Farinha | Pedro Ramos | José G. C. de Souza | Taisiya Glushkova | Miguel Vera | Fabio Kepler | André F. T. Martins
Proceedings of the Sixth Conference on Machine Translation

We present the joint contribution of IST and Unbabel to the WMT 2021 Shared Task on Quality Estimation. Our team participated on two tasks: Direct Assessment and Post-Editing Effort, encompassing a total of 35 submissions. For all submissions, our efforts focused on training multilingual models on top of OpenKiwi predictor-estimator architecture, using pre-trained multilingual encoders combined with adapters. We further experiment with and uncertainty-related objectives and features as well as training on out-of-domain direct assessment data.

pdf bib
Are References Really Needed? Unbabel-IST 2021 Submission for the Metrics Shared Task
Ricardo Rei | Ana C Farinha | Chrysoula Zerva | Daan van Stigt | Craig Stewart | Pedro Ramos | Taisiya Glushkova | André F. T. Martins | Alon Lavie
Proceedings of the Sixth Conference on Machine Translation

In this paper, we present the joint contribution of Unbabel and IST to the WMT 2021 Metrics Shared Task. With this year’s focus on Multidimensional Quality Metric (MQM) as the ground-truth human assessment, our aim was to steer COMET towards higher correlations with MQM. We do so by first pre-training on Direct Assessments and then fine-tuning on z-normalized MQM scores. In our experiments we also show that reference-free COMET models are becoming competitive with reference-based models, even outperforming the best COMET model from 2020 on this year’s development data. Additionally, we present COMETinho, a lightweight COMET model that is 19x faster on CPU than the original model, while also achieving state-of-the-art correlations with MQM. Finally, in the “QE as a metric” track, we also participated with a QE model trained using the OpenKiwi framework leveraging MQM scores and word-level annotations.

pdf bib
Uncertainty-Aware Machine Translation Evaluation
Taisiya Glushkova | Chrysoula Zerva | Ricardo Rei | André F. T. Martins
Findings of the Association for Computational Linguistics: EMNLP 2021

Several neural-based metrics have been recently proposed to evaluate machine translation quality. However, all of them resort to point estimates, which provide limited information at segment level. This is made worse as they are trained on noisy, biased and scarce human judgements, often resulting in unreliable quality predictions. In this paper, we introduce uncertainty-aware MT evaluation and analyze the trustworthiness of the predicted quality. We combine the COMET framework with two uncertainty estimation methods, Monte Carlo dropout and deep ensembles, to obtain quality scores along with confidence intervals. We compare the performance of our uncertainty-aware MT evaluation methods across multiple language pairs from the QT21 dataset and the WMT20 metrics task, augmented with MQM annotations. We experiment with varying numbers of references and further discuss the usefulness of uncertainty-aware quality estimation (without references) to flag possibly critical translation mistakes.

2018

pdf bib
Paths for uncertainty: Exploring the intricacies of uncertainty identification for news
Chrysoula Zerva | Sophia Ananiadou
Proceedings of the Workshop on Computational Semantics beyond Events and Roles

Currently, news articles are produced, shared and consumed at an extremely rapid rate. Although their quantity is increasing, at the same time, their quality and trustworthiness is becoming fuzzier. Hence, it is important not only to automate information extraction but also to quantify the certainty of this information. Automated identification of certainty has been studied both in the scientific and newswire domains, but performance is considerably higher in tasks focusing on scientific text. We compare the differences in the definition and expression of uncertainty between a scientific domain, i.e., biomedicine, and newswire. We delve into the different aspects that affect the certainty of an extracted event in a news article and examine whether they can be easily identified by techniques already validated in the biomedical domain. Finally, we present a comparison of the syntactic and lexical differences between the the expression of certainty in the biomedical and newswire domains, using two annotated corpora.

2015

pdf bib
Event Extraction in pieces:Tackling the partial event identification problem on unseen corpora
Chrysoula Zerva | Sophia Ananiadou
Proceedings of BioNLP 15