Protecting intellectual property (IP) of text such as articles and code is increasingly important, especially as sophisticated attacks become possible, such as paraphrasing by large language models (LLMs) or even unauthorized training of LLMs on copyrighted text to infringe such IP. However, existing text watermarking methods are not robust enough against such attacks nor scalable to millions of users for practical implementation. In this paper, we propose Waterfall, the first training-free framework for robust and scalable text watermarking applicable across multiple text types (e.g., articles, code) and languages supportable by LLMs, for general text and LLM data provenance. Waterfall comprises several key innovations, such as being the first to use LLM as paraphrasers for watermarking along with a novel combination of techniques that are surprisingly effective in achieving robust verifiability and scalability. We empirically demonstrate that Waterfall achieves significantly better scalability, robust verifiability, and computational efficiency compared to SOTA article-text watermarking methods, and also showed how it could be directly applied to the watermarking of code.
Language models (LMs) are indispensable tools for natural language processing tasks, but their vulnerability to adversarial attacks remains a concern. While current research has explored adversarial training techniques, their improvements to defend against word-level attacks have been limited. In this work, we propose a novel approach called Semantic Robust Defence (SemRoDe), a Macro Adversarial Training strategy to enhance the robustness of LMs. Drawing inspiration from recent studies in the image domain, we investigate and later confirm that in a discrete data setting such as language, adversarial samples generated via word substitutions do indeed belong to an adversarial domain exhibiting a high Wasserstein distance from the base domain. Our method learns a robust representation that bridges these two domains. We hypothesize that if samples were not projected into an adversarial domain, but instead to a domain with minimal shift, it would improve attack robustness. We align the domains by incorporating a new distance-based objective. With this, our model is able to learn more generalized representations by aligning the model’s high-level output features and therefore better handling unseen adversarial samples. This method can be generalized across word embeddings, even when they share minimal overlap at both vocabulary and word-substitution levels. To evaluate the effectiveness of our approach, we conduct experiments on BERT and RoBERTa models on three datasets. The results demonstrate promising state-of-the-art robustness.
This work empirically investigates punctuation insertions as adversarial attacks on NLP systems. Data from experiments on three tasks, five datasets, and six models with four attacks show that punctuation insertions, when limited to a few symbols (apostrophes and hyphens), are a superior attack vector compared to character insertions due to 1) a lower after-attack accuracy (Aaft-atk) than alphabetical character insertions; 2) higher semantic similarity between the resulting and original texts; and 3) a resulting text that is easier and faster to read as assessed with the Test of Word Reading Efficiency (TOWRE)). The tests also indicate that 4) grammar checking does not mitigate punctuation insertions and 5) punctuation insertions outperform word-level attacks in settings with a limited number of word synonyms and queries to the victim’s model. Our findings indicate that inserting a few punctuation types that result in easy-to-read samples is a general attack mechanism. In light of this threat, we assess the impact of punctuation insertions, potential mitigations, the mitigation’s tradeoffs, punctuation insertion’s worst-case scenarios and summarize our findings in a qualitative casual map, so that developers can design safer, more secure systems.