Chuan Shi


2021

pdf bib
Compare to The Knowledge: Graph Neural Fake News Detection with External Knowledge
Linmei Hu | Tianchi Yang | Luhao Zhang | Wanjun Zhong | Duyu Tang | Chuan Shi | Nan Duan | Ming Zhou
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Nowadays, fake news detection, which aims to verify whether a news document is trusted or fake, has become urgent and important. Most existing methods rely heavily on linguistic and semantic features from the news content, and fail to effectively exploit external knowledge which could help determine whether the news document is trusted. In this paper, we propose a novel end-to-end graph neural model called CompareNet, which compares the news to the knowledge base (KB) through entities for fake news detection. Considering that fake news detection is correlated with topics, we also incorporate topics to enrich the news representation. Specifically, we first construct a directed heterogeneous document graph for each news incorporating topics and entities. Based on the graph, we develop a heterogeneous graph attention network for learning the topic-enriched news representation as well as the contextual entity representations that encode the semantics of the news content. The contextual entity representations are then compared to the corresponding KB-based entity representations through a carefully designed entity comparison network, to capture the consistency between the news content and KB. Finally, the topic-enriched news representation combining the entity comparison features is fed into a fake news classifier. Experimental results on two benchmark datasets demonstrate that CompareNet significantly outperforms state-of-the-art methods.

2020

pdf bib
Graph Neural News Recommendation with Unsupervised Preference Disentanglement
Linmei Hu | Siyong Xu | Chen Li | Cheng Yang | Chuan Shi | Nan Duan | Xing Xie | Ming Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

With the explosion of news information, personalized news recommendation has become very important for users to quickly find their interested contents. Most existing methods usually learn the representations of users and news from news contents for recommendation. However, they seldom consider high-order connectivity underlying the user-news interactions. Moreover, existing methods failed to disentangle a user’s latent preference factors which cause her clicks on different news. In this paper, we model the user-news interactions as a bipartite graph and propose a novel Graph Neural News Recommendation model with Unsupervised Preference Disentanglement, named GNUD. Our model can encode high-order relationships into user and news representations by information propagation along the graph. Furthermore, the learned representations are disentangled with latent preference factors by a neighborhood routing algorithm, which can enhance expressiveness and interpretability. A preference regularizer is also designed to force each disentangled subspace to independently reflect an isolated preference, improving the quality of the disentangled representations. Experimental results on real-world news datasets demonstrate that our proposed model can effectively improve the performance of news recommendation and outperform state-of-the-art news recommendation methods.

2019

pdf bib
Improving Distantly-Supervised Relation Extraction with Joint Label Embedding
Linmei Hu | Luhao Zhang | Chuan Shi | Liqiang Nie | Weili Guan | Cheng Yang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Distantly-supervised relation extraction has proven to be effective to find relational facts from texts. However, the existing approaches treat labels as independent and meaningless one-hot vectors, which cause a loss of potential label information for selecting valid instances. In this paper, we propose a novel multi-layer attention-based model to improve relation extraction with joint label embedding. The model makes full use of both structural information from Knowledge Graphs and textual information from entity descriptions to learn label embeddings through gating integration while avoiding the imposed noise with an attention mechanism. Then the learned label embeddings are used as another atten- tion over the instances (whose embeddings are also enhanced with the entity descriptions) for improving relation extraction. Extensive experiments demonstrate that our model significantly outperforms state-of-the-art methods.

pdf bib
Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification
Hu Linmei | Tianchi Yang | Chuan Shi | Houye Ji | Xiaoli Li
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Short text classification has found rich and critical applications in news and tweet tagging to help users find relevant information. Due to lack of labeled training data in many practical use cases, there is a pressing need for studying semi-supervised short text classification. Most existing studies focus on long texts and achieve unsatisfactory performance on short texts due to the sparsity and limited labeled data. In this paper, we propose a novel heterogeneous graph neural network based method for semi-supervised short text classification, leveraging full advantage of few labeled data and large unlabeled data through information propagation along the graph. In particular, we first present a flexible HIN (heterogeneous information network) framework for modeling the short texts, which can integrate any type of additional information as well as capture their relations to address the semantic sparsity. Then, we propose Heterogeneous Graph ATtention networks (HGAT) to embed the HIN for short text classification based on a dual-level attention mechanism, including node-level and type-level attentions. The attention mechanism can learn the importance of different neighboring nodes as well as the importance of different node (information) types to a current node. Extensive experimental results have demonstrated that our proposed model outperforms state-of-the-art methods across six benchmark datasets significantly.