Chunhao Zhang
2024
Phonetic and Lexical Discovery of Canine Vocalization
Theron S. Wang
|
Xingyuan Li
|
Chunhao Zhang
|
Mengyue Wu
|
Kenny Q. Zhu
Findings of the Association for Computational Linguistics: EMNLP 2024
This paper attempts to discover communication patterns automatically within dog vocalizations in a data-driven approach, which breaks the barrier previous approaches that rely on human prior knowledge on limited data. We present a self-supervised approach with HuBERT, enabling the accurate classification of phones, and an adaptive grammar induction method that identifies phone sequence patterns that suggest a preliminary vocabulary within dog vocalizations. Our results show that a subset of this vocabulary has substantial causality relations with certain canine activities, suggesting signs of stable semantics associated with these “words”.
2023
Transcribing Vocal Communications of Domestic Shiba lnu Dogs
Jieyi Huang
|
Chunhao Zhang
|
Mengyue Wu
|
Kenny Zhu
Findings of the Association for Computational Linguistics: ACL 2023
How animals communicate and whether they have languages is a persistent curiosity of human beings. However, the study of animal communications has been largely restricted to data from field recordings or in a controlled environment, which is expensive and limited in scale and variety. In this paper, we take domestic Shiba Inu dogs as an example, and extract their vocal communications from large amount of YouTube videos of Shiba Inu dogs. We classify these clips into different scenarios and locations, and further transcribe the audio into phonetically symbolic scripts through a systematic process. We discover consistent phonetic symbols among their expressions, which indicates that Shiba Inu dogs can have systematic verbal communication patterns. This reusable framework produces the first-of-its-kind Shiba Inu vocal communication dataset that will be valuable to future research in both zoology and linguistics.